Analysis of the tadpole graph $\boldsymbol{T}_{\boldsymbol{m}, n}$ cardinality of hop dominance number

${ }^{1}$.M.Suneetha Rani, ${ }^{2}$ Sk.Jhansi Begum, ${ }^{3}$ B.Srinivasa Rao
${ }^{1,2,3}$ Assistant Professor, Dept. of BS \&H, Newton's Institute of Engineering, Macherla, Andhra Pradesh, India.

Abstract

Make $T_{m, n}$ a tadpole graph. If there is an u in S_{h} such that $d(u, v)=2$ for all v in $V S_{h}$, then the set $S_{h} V\left(T_{m, n}\right)$ is a hop dominating set of $\mathrm{T}_{\mathrm{m}, \mathrm{n}}$. The hop domination number of G is the minimal cardinality of a hop dominating set of G and is represented by the symbol $h\left(T_{m, n}\right)$. In this essay, we spoke about the tadpole graph's hop dominance number.

Keywords: hop-domination, hop-domination number, Tadpole graph, neighbourhood.

1. Introduction

[6] The graph created by connecting a cycle graph and a route graph with a bridge is known as the Tadpole graph (Truszczynski 1984) or Kite graph (Kim and Park 2006). $\mathrm{T}_{\mathrm{m}, \mathrm{n}}$ serves as a sign for it. In specifically, $\mathrm{T}_{3,1}$ and $\mathrm{T}_{4,1}$ of the Tadpole graph $\left(\mathrm{T}_{\mathrm{m}, 1}\right)$ are referred to as the Paw graph and Banner graph, respectively. the graph of the generalized tadpole

Fig. 1.1
Let us denote the vertices of a Tadpole graph as two distinct sets:
(i) Refer the vertices of the cycle graph C_{m} as $\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ and
(ii) The Vertices of the Path graph P_{n} as $\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$
\therefore The vertices of T_{m}, are

$$
\begin{aligned}
V\left(T_{m, n}\right) & =V\left(C_{m}\right) \cup V\left(P_{n}\right) \\
& =\left\{v_{1}, v_{2}, \ldots v_{m}, u_{1}, u_{2}, \ldots u_{n}\right\}
\end{aligned}
$$

Theorem 1.1 ([11] p.546): A dominating set D of a graph G is minimal iff for each vertex $v \in D$, one of the following conditions satisfied,
(i) There exists a vertex $u \in V-D$ such that (u) $\cap D=\{v\}$
(ii) v is an isolated vertex in D.
[3] A subset S_{h} of $\left(T_{m, n}\right)$ is a hop dominating set of $T_{m, n}$ if for all v in $V-S_{h}$, there exists u in S_{h} such that $(u, v)=2$. The minimum cardinality of a hop dominating set of G is called the hop domination number of G
and is denoted by $\gamma_{h}\left(T_{m, n}\right)$. For any vertex $v \in\left(T_{m, n}\right)$, the open neighbourhood of v is the set $N(v)=$ $\left\{u \in\left(T_{m, n}\right) \mid u v \in E\left(T_{m, n}\right)\right\}$ and the closed neighbourhood is $N[v]=N(v) \cup\{v\}$. For a set $S_{h} \subseteq\left(T_{m, n}\right)$, theopen neighbourhood of S_{h} is $N\left(S_{h}\right)=\bigcup_{v \in S_{h}} N(v)$ and the closed neighbourhood is $N\left[S_{h}\right]=N\left(S_{h}\right) \cup S_{h}$. A set $S_{h} \subseteq\left(T_{m, n}\right)$ is hop dominating set if $N\left[S_{h}\right]=V\left(T_{m, n}\right)$.
2. Diagrammatic discussion on Hop domination number of Tadpole Graph

S.No.	Pan Graph (\boldsymbol{P}_{n})	Graph	$\gamma_{h}(G)$
1	$\mathrm{n}=3, P_{3}$		2
2	$\mathrm{n}=4, P_{4}$		2
3	$\mathrm{n}=5, P_{5}$		2
4	$\mathrm{n}=6, P_{6}$		3
5	$\mathrm{n}=7, \mathrm{P}_{7}$		3
6	$\mathrm{n}=8, P_{8}$		4
7	$\mathrm{n}=9, P_{9}$		4

Table 2.1: Pan $\operatorname{Graph}\left(P_{n}\right)$

S.No.	Tadpole Graph $\left(\boldsymbol{T}_{m, n}\right), \boldsymbol{m}=3$	Graph	$\boldsymbol{\gamma}_{\boldsymbol{h}}(\boldsymbol{G})$
1	$\mathrm{n}=1, T_{3,1}$ (paw graph)		2
2	$\mathrm{n}=2, T_{3,2}$		2
3	$\mathrm{n}=3, T_{3,3}$		2
4	$\mathrm{n}=4, T_{3,4}$		2
5	$\mathrm{n}=5, T_{3,5}$		3
6	$\mathrm{n}=6, T_{3,6}$		4
7	$\mathrm{n}=7, T_{3,7}$		4
8	$\mathrm{n}=8, T_{3,8}$		4

9	$\mathrm{n}=9, T_{3,9}$		4
10	$\mathrm{n}=10, T_{3,10}$		4

Table 2.2: Tadpole Graph $\left(T_{m}\right), m=3$

S.No.	Tadpole Graph $\left(\boldsymbol{T}_{m, n}\right), m=4$	Graph	$\gamma_{h}(G)$
1	$\begin{gathered} \mathrm{n}=1, T_{4,1} \\ \text { (Banner graph) } \end{gathered}$		2
2	$\mathrm{n}=2, T_{4,2}$		2
3	$\mathrm{n}=3, T_{4,3}$		2
4	$\mathrm{n}=4, T_{4,4}$		3
5	$\mathrm{n}=5, T_{4,5}$		4
6	$\mathrm{n}=6, T_{4,6}$		4
7	$\mathrm{n}=7, T_{4,7}$		4

8	$\mathrm{n}=8, T_{4,8}$		4
9	$\mathrm{n}=9, T_{4,9}$		4
10	$\mathrm{n}=10, T_{4,10}$		5

Table 2.3: Tadpole Graph $\left(T_{m}\right), m=4$

$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Tadpole Graph $\left(\boldsymbol{T}_{m, n}\right), \boldsymbol{m}=\mathbf{5}$	Graph	$\gamma_{h}(G)$
1	$\mathrm{n}=1, T_{5,1}$		2
2	$\mathrm{n}=2, T_{5,2}$		2
3	$\mathrm{n}=3, T_{5,3}$		2
4	$\mathrm{n}=4, T_{5,4}$		3
5	$\mathrm{n}=5, T_{5,5}$		4

6

Table 2.4: Tadpole Graph $\left(T_{m}\right), m=5$

3. Results on Hop domination number of Tadpole graph $\boldsymbol{T}_{\boldsymbol{m}, \boldsymbol{n}}$

> Theorem 3.1: $2 p$ For m-pan graph, the hop domination number is given by
> $2 p$
> $\gamma_{h}= \begin{cases}2 p+1 & \text { iff } \quad m=6 p+1 \\ 2 p+2 \text { if } & m=6 p+r, 2 \leq r \leq 5\end{cases}$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(1.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case(i): If $m=6 p$.
Let $S_{h}=\left\{c_{6 k-5}, c_{6 k-4} \mid k=1,2, \ldots, p\right\}$.
If $v=c_{6 k-5}$, then atleast one vertex of $\left\{p_{1}, c_{m-1}, c_{6 k-3}, c_{6 k-7} \mid k=1,2, \ldots, p\right\}$ is not hop dominating with any vertex in $S_{h}{ }^{\prime}$. If $v=c_{6 k-4}$, then atleast one vertex of $\left\{c_{m}, c_{6 k-6}, c_{6 k-2} \mid k=1,2, \ldots, p\right\}$ is not hop dominated by any vertex in $S_{h}{ }^{\prime}$. Therefore, $S_{h}{ }^{\prime}$ is not a hop dominating set. Hence S_{h} is the minimum. Since for each $k, 1 \leq k \leq p$, there exists $c_{6 k-5}, c_{6 k-4}$ in $\left|S_{h}\right|=2 p . \gamma_{h}\left(T_{m, 1}\right)=2 p$ if $m=$ $6 p$.

Conversely, If $\gamma_{h}\left(T_{m, 1}\right)=2 p=\left|S_{h}\right|$, where S_{h} is given by an equation (1). Hence $V-S_{h}=\left\{c_{6 k-2}, c_{6 k-3}, c_{6 k-6}, c_{6 k-7}, p_{1} \mid k=1,2, \ldots, p\right\} . \quad\left|V-S_{h}\right|=4 p+1$. We know that $V=\left(V-S_{h}\right) \cup S_{h}$, therefore $|V|=4 p+1+2 p=6 p+1$. Hence $m=6 p$.

Thus $\gamma_{h}\left(T_{m, 1}\right)=2 p$ iff $m=6 p$.
Case(ii): If $\mathrm{m}=6 \mathrm{p}+1$.
Let $S_{h}=\left\{c_{6 k-5}, c_{6 k-4}, c_{m-2} \mid k=1,2, \ldots, p\right\}$.
If $v=c_{6 k-5}$ or $c_{6 k-4}$, the minimality of S_{h} follows from the above case(i) or else if $v=c_{m-2}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating with c_{m-2}. Hence $S_{h}{ }^{\prime}$ is not a hop dominating set. Thus S_{h} is minimum and for each $\mathrm{k}, 1 \leq k \leq p$, there exists $c_{6 k-5}, c_{6 k-4}$ in S_{h} and there exists c_{m-2} in S_{h} independent of k . Therefore $\left|S_{h}\right|=2 k+1$. $\gamma_{h}\left(T_{m, 1}\right)=2 p+1$ if $m=6 p+1$.

Case(iii): If $m=6 p+2$.
Let $S_{h}=\left\{c_{6 k-5}, c_{6 k-4}, c_{m-2}, c_{m-3} \mid k=1,2, \ldots, p\right\}$.
If $v=c_{6 k-5}$ or $c_{6 k-4}$, the minimality of S_{h} follows from the above case(i) or else if $v=$ c_{m-2} or c_{m-3} there is no vertex in $S_{h}{ }^{\prime}$ hop dominating with c_{m-2} or c_{m-3} respectively. Hence $S_{h}{ }^{\prime}$ is not a hop dominating set. Thus S_{h} is minimal hop dominating set and for each $\mathrm{k}, 1 \leq k \leq p$, there exists $c_{6 k-5}, c_{6 k-4}$ in $V-S_{h}$ and there exists c_{m-2}, c_{m-3} in S_{h} independent of k. Therefore $\left|S_{h}\right|=$ $2 k+2$.

Case(iv): If $m=6 p+3$.
Let $S_{h}=\left\{c_{6 k-5}, c_{6 k-4}, c_{m-2}, c_{m-3} \mid k=1,2, \ldots, p\right\}$.
If $v=c_{6 k-5}$ or $c_{6 k-4}$ or c_{m-2}, the minimality of S_{h} follows from the above case(i) and case (iii) or if $v=c_{m-3}$ there is no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{m-5} in $V-S_{h}{ }^{\prime}$. Therefore $\left|S_{h}\right|=2 k+2$.

Case (v): If $m=6 p+4$ and $6 p+5$.
Let $S_{h}=\left\{c_{6 k-5}, c_{6 k-4} \mid k=1,2, \ldots, p\right\}$. The minimality of S_{h} follows from case(i) and $\left|S_{h}\right|=2(2 p+1)=2 p+2$. Hence $\gamma_{h}\left(T_{m, 1}\right)=2 p+2$ if $m=6 p+r, 2 \leq r \leq 5$.

Let us indicate the vertices of T_{m}, as two sets first to refer the vertices of cycle graph C_{m} as $\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ and the second to refer the vertices of path graph P_{n} as $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. So the vertices of T_{m}, is denoted as $\mathrm{V}\left(T_{m, n}\right)=\left\{\left\{c_{1}, c_{2}, \ldots, c_{m}\right\} \cup\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}\right\}$. Let the dominating set of T_{m}, be S_{h}.

Theorem 3.2: When $\mathrm{m}=6 \mathrm{p}$, the hop domination of a tadpole graph T_{m}, is given by

$$
\begin{array}{ccr}
2 p+2 k & \text { if } & n=6 k+r, 0 \leq r \leq 2 \\
\gamma_{h}\left(T_{m, n}\right)=\{2 p+2 k+1 & \text { if } & n=6 k+3 \\
2 p+2 k+2 & \text { if } & n=6 k+r, r=4,5
\end{array}
$$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$
such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case(i): If $n=6 k$
Let $S_{h}=\left\{c_{6 q-2}, c_{6 q-3}, p_{6 s-2}, p_{6 s-2} \mid q=1,2, \ldots, m\right.$ and $\left.s=1,2, \ldots, p\right\}$
If $v=c_{6 q-2}$, then there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 q-4}$ and $c_{6 q}$.If $v=c_{6 q-3}$, then there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 q-5}$ and $c_{6 q-1}$.If $v=c_{6 s-2}$, then there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 s-4}$ and $c_{6 s}$.If $v=c_{6 s-3}$, then there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 s-1}$ and $c_{6 s-5}$.

Thus $S_{h}{ }^{\prime}$ is not minimal hop dominating set. Hence S_{h} is the minimal hop dominating set.
Case(ii): If $\mathrm{n}=6 \mathrm{k}+1$
Let $S_{h}=\left\{c_{6 q-5}, c_{6 q-4}, p_{6 s-1}, p_{6 s-2} \mid q=1,2, \ldots, m\right.$ and $\left.s=1,2, \ldots, p\right\}$
If $v=c_{6 q-5}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 q-3}, c_{6 q-7}$. In particular, If $q=1$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{m-1}, c_{3} and p_{1}. If $v=c_{6 q-4}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 q-2}$ and $c_{6 q-6}$. In particular, If $q=1$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{m} and c_{4}. If $v=$ $p_{6 s-1}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $p_{6 s-3}$ and $p_{6 s+1}$. If $v=p_{6 s-2}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $p_{6 s-4}$ and $p_{6 s}$.

Thus $S_{h}{ }^{\prime}$ is not minimal hop dominating set. Hence S_{h} is the minimal hop dominating set.

Case(iii): $\mathrm{n}=6 \mathrm{k}+2$
Let $S_{h}=\left\{c_{6 q}, c_{6 q-1}, p_{6 s}, p_{6 s-1} \mid q=1,2, \ldots, m\right.$ and $\left.s=1,2, \ldots, p\right\}$
(i)If $v=c_{6 q}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 q+2}$ and $c_{6 q-2}$. In particular, If $v=c_{m}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{2}, c_{m-2} and p_{2}. (ii)If $v=c_{6 q-1}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 q+1}$ and $c_{6 q-3}$. In particular, If $v=c_{m-1}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{1}, c_{m-3} and p_{1}.(iii) If $v=p_{6 s}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $p_{6 s-2}$ and $p_{6 s+2}$. If $v=$ $p_{6 s-1}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $p_{6 s-3}$ and $p_{6 s+1}$.

In the above cases (i), (ii) and (iii) for each $q, 1 \leq q \leq m$, there exists c_{i} and c_{i+1} in S_{h} and for each $s, 1 \leq s \leq p$, there exists p_{i} and p_{i+1} in S_{h}, hence $\left|S_{h}\right|=2 p+2 k$.

Thus $\gamma_{h}\left(T_{m, n}\right)=2 \mathrm{p}+2 \mathrm{k}$ if $\mathrm{m}=6 \mathrm{p}$ and $\mathrm{n}=6 \mathrm{k}+\mathrm{r}, 0 \leq \mathrm{r} \leq 2$.
Case(iv): If $\mathrm{n}=6 \mathrm{k}+3$.
Let $S_{h}=\left\{c_{6 q}, c_{6 q+1}, p_{6 s}, p_{6 s+1} \mid q=0,1, \ldots, m\right.$ and $\left.s=0,1,2, \ldots, p\right\}$
(i): If $v=c_{1}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{3}.(ii): If $v=c_{6 q}$, proof follows from (i) of case(iii). (iii): If $v=c_{6 q+1}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 q-1}, c_{6 q+3}$. (iv): If $v=p_{65}$, the proof follows from (iii) of case(iii). (v): If $v=p_{6 s+1}$, , there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $p_{6 s-1}, p_{6 s+3}$.

Hence $S_{h}{ }^{\prime}$ is not minimum. Thus S_{h} is the hop dominating set and $\left|S_{h}\right|=2 p+2 k+1$.
Thus $\gamma_{h}\left(T_{m, n}\right)=2 \mathrm{p}+2 \mathrm{k}+1$ if $\mathrm{m}=6 \mathrm{p}$ and $\mathrm{n}=6 \mathrm{k}+3$.
Case(v): If $\mathrm{n}=6 \mathrm{k}+4$.
Let $S_{h}=\left\{c_{1}, c_{2}, c_{6 q+1}, c_{6 q+2}, p_{6 s+1}, p_{6 s+2} \mid q=0,1, \ldots, m\right.$ and $\left.s=0,1,2, \ldots, k\right\}$
(i): If $v=c_{1}$, the proof follows from (i) of case(iv). (ii): If $v=c_{2}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{4}. (iii): If $v=c_{6 q+1}$, the proof follows from (iii) of case(iv). (iv): If $v=c_{6 q+2}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 q}$ and $c_{6 q+1}$. (v): If $v=p_{6 s+1}$, the proof follows from (v) of case(iv). (vi): If $v=p_{6 s+2}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $p_{6 s}$ and $p_{6 s+4}$.

Case(vi): If $\mathrm{n}=6 \mathrm{k}+5$
Let $S_{h}=\left\{c_{6 q+2}, c_{6 q+3}, p_{6 s+2}, p_{6 s+3} \mid q=0,1, \ldots, m-1\right.$ and $\left.s=0,1,2, \ldots, k\right\}$
 vertex in $S_{h}{ }^{\prime}$ hop dominating $c_{6 q+5}$ and $c_{6 q+1}$. (iii): If $v=p_{6 s+2}$, the proof follows from (iv) of case(v). (iv): If $v=p_{6 s+3}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating $p_{6 s+5}, p_{6 s+1}$.

In case (v) and (vi), $S_{h}{ }^{\prime}$ is not minimum. Thus S_{h} is the hop dominating set and $\left|S_{h}\right|=2 p+2 k+2$ if $m=6 p$ and $n=6 p+r, r=4$ and 5 .

Thus $\gamma_{h}\left(T_{m, n}\right)=2 p+2 k+2$ if $m=6 p$ and $n=6 p+r, r=4$ and 5 .

Theorem 3.3: When $m=6 p+1$, the hop domination of a tadpole graph, T_{m}, is given by, $\gamma_{h}\left(T_{m, n}\right)=\left\{\begin{array}{l}2 p+2 k+1 \text { if } n=6 k+r, 0 \leq r \leq 2 \\ 2 p+2 k+2 \text { if } n=6 k+r, 3 \leq r \leq 5\end{array}\right.$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case(i): $\mathrm{n}=6 \mathrm{k}$., Let $S_{h}=\left\{c_{1}, c_{6 q-2}, c_{6 q-1}, p_{6 s-3}, p_{6 s-2} \mid q=1,2, \ldots, p \& s=1,2, \ldots, k\right\}$
If $v=c_{1}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{1}. If $v=c_{6 q-2}$ or $c_{6 q-1}$ or $p_{6 s-3}$ or $p_{6 s-2}$, the proof follows from case(i) of theorem (3.3). Thus $S_{h}{ }^{\prime}$ is not minimal.

Case(ii): $\mathrm{n}=6 \mathrm{k}+1$. Let $S_{h}=\left\{c_{2}, c_{6 q-1}, c_{6 q}, p_{6 s-1}, p_{6 s-2} \mid q=1,2, \ldots, p \& s=1,2, \ldots, k\right\}$
If $v=c_{2}$, there is no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{2}. If $v=c_{6 q}$ or $c_{6 q-1}$, the proof follows from case(iii) of theorem (3.3). If $v=p_{6 s-3}$ or $p_{6 s-2}$, the proof follows from case(ii) of theorem (3.3).

Therefore, $S_{h}{ }^{\prime}$ is not minimal.
Case(iii): $\mathrm{n}=6 \mathrm{k}+2$. Let $S_{h}=\left\{c_{1}, c_{6 q}, c_{6 q+1}, p_{6 s}, p_{6 s-1} \mid q=0,1,2, \ldots, p \& s=1,2, \ldots, k\right\}$.

If $v=c_{1}$ or $c_{6 q}$ or $c_{6 q+1}$ or $p_{6 s}$, the proof follows from case(iv) of theorem (3.3).If $v=p_{6 s-1}$, the proof follows from subcase (iv) of case(iii) of theorem (3.3).

Therefore, $S_{h}{ }^{\prime}$ is not minimal. Hence S_{h} is hop dominating set and $\left|S_{h}\right|=2 p+2 k+1$ if $n=6 k+r, 0 \leq r \leq 2$.

Case(iv): $\mathrm{n}=6 \mathrm{k}+3$. Let $S_{h}=\left\{c_{3}, c_{4}, c_{6 q-4}, c_{6 q-5}, p_{6 s}, p_{6 s+1} \mid q=2, \ldots, p+1 \& s=0,1,2, \ldots, k\right\}$.
If $v=c_{3}$ or c_{4}, the proof follows from case(v) of theorem (3.3). If $v=c_{6 q-4}$ or $c_{6 q-5}$, the proof follows from case(iii) of theorem (3.3).If $v=p_{6 s}$ or $p_{6 s+1}$, the proof follows from case(iv) of theorem (3.3).

Case(v): $\mathrm{n}=6 \mathrm{k}+4$. Let $S_{h}=\left\{c_{6 q-3}, c_{6 q-4}, p_{6 s+1}, p_{6 s+2} \mid q=1,2, \ldots, p \& s=0,1,2, \ldots, k\right\}$.
If $v=c_{6 q-3}$, the minimality of D follows from case(i) of theorem (3.3) or else if $v=c_{6 q-4}$, it follows from case (ii) of theorem(3.3). If $v=p_{6 s+1}$ or $p_{6 s+2}$, the minimality of S_{h} follows from case(iv) of theorem(3).

Case(vi): $\mathrm{n}=6 \mathrm{k}+5$. Let $S_{h}=\left\{c_{6 q-2}, c_{6 q-3}, p_{6 s+2}, p_{6 s+3} \mid q=1,2, \ldots, p \& s=0,1,2, \ldots, k\right\}$.
If $v=c_{6 q-2}$ or $c_{6 q-3}$, the minimality of S_{h} follows from case(i) of theorem(3.3). If $v=$ $p_{6 s+2}$ or $p_{6 s+3}$, the minimality of S_{h} follows from case(vi) of theorem (3.3).

Hence S_{h} is the hop dominating set and $\left|S_{h}\right|=2 p+2 k+2$ if $n=6 k+r, 3 \leq r \leq 5$. Thus when $\mathrm{m}=6 \mathrm{p}+1, \gamma_{h}\left(T_{m, n}\right)=\left\{\begin{array}{l}2 p+2 k+1 \text { if } n=6 k+r, 0 \leq r \leq 2 \\ 2 p+2 k+2 \text { if } n=6 k+r, 3 \leq r \leq 5 .\end{array}\right.$

Theorem 3.4: When $m=6 p+2$, the hop domination of T_{m}, is given

$$
\gamma_{h}\left(T_{m, n}\right)=\left\{\begin{array}{lr}
2 p+2 k+2 & \text { if } n=6 k+r, 0 \leq r \leq 4 \\
2 p+2 k+3 & \text { if } n=6 k+5
\end{array}\right.
$$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.
Case (i): If $n=6 k, S_{h}=\left\{c_{1}, c_{2}, c_{6 q-1}, c_{6 q}, p_{6 s-3}, p_{6 s-2} / q=1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (ii): If $n=6 k+1, S_{h}=\left\{c_{2}, c_{3}, c_{6 q}, c_{6 q+1}, p_{6 s-2}, p_{6 s-1} / q=1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (iii): If $n=6 k+2, S_{h}=\left\{c_{3}, c_{4}, c_{6 q+1}, c_{6 q+2}, p_{6 s-1}, p_{6 s} / q=1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (iv): If $n=6 k+3, S_{h}=\left\{c_{6 q+2}, c_{6 q+3}, p_{6 s^{\prime}}, p_{6 s+1} / q=0,1, \ldots \ldots, p \& s=0,1, \ldots \ldots, k\right\}$
Case (v): If $n=6 k+4, S_{h}=\left\{c_{6 q-3}, c_{6 q-2}, p_{6 s+1}, p_{6 s+2} / q=1,2 \ldots \ldots, p \& s=0,1,2, \ldots \ldots, k\right\}$

When $m=6 p+2$, the minimality of S_{h} follows as the previous theorem and $\left|S_{h}\right|=2 p+2 k+2$ if $n=6 k+r, 0 \leq r \leq 4$.

Case (vi): $n=6 k+5, S_{h}=\left\{c_{1}, c_{6 q-1}, c_{6 q-2}, p_{6 s+2}, p_{6 s+3} / q=1,2 \ldots \ldots, p \& s=0,1,2, \ldots \ldots, k\right\}$
When $m=6 p+2$ and $n=6 k+5$, the S_{h} is the hop dominating set as of from the previous theorems and $\left|S_{h}\right|=2 p+2 k+3$.

Thus when $=6 p+2, h \quad\left(T_{m, n}\right)= \begin{cases}2 p+2 k+2 & \text { if } n=6 k+r, 0 \leq r \leq 4 \\ 2 p+2 k+3 & \text { if } n=6 k+5 .\end{cases}$
Theorem 3.5: When $m=6 p+3$, the hop domination of T_{m}, is given

$$
\gamma_{h}\left(T_{m, n}\right)=\left\{\begin{array}{lr}
2 p+2 k+2 & \text { if } n=6 k+r, 0 \leq r \leq 4 \\
2 p+2 k+4 & \text { if } n=6 k+5
\end{array}\right.
$$

Proof:

Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case (i): If $n=6 p, S_{h}=\left\{c_{2}, c_{3}, c_{6 q}, c_{6 q+1}, p_{6 s-3}, p_{6 s-2} / q=1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (ii): If $n=6 p+1, S_{h}=\left\{c_{6 q+1}, c_{6 q+2}, p_{6 s-2}, p_{6 s-1} / q=0,1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (iii): If $n=6 p+2, S_{h}=\left\{c_{6 q+2}, c_{6 q+3}, p_{6 s-1}, p_{6 s} / q=0,1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (iv): If $n=6 p+3, S_{h}=\left\{c_{6 q-3}, c_{6 q-2}, p_{6 s^{\prime}}, p_{6 s+1} / q=1,2 \ldots \ldots, p \& s=0,1, \ldots \ldots, k\right\}$
Case (v): If $n=6 p+4, S_{h}=\left\{c_{6 q-2}, c_{6 q-1}, p_{6 s+1}, p_{6 s+2} / q=1,2 \ldots \ldots, p \& s=0,1,2, \ldots \ldots, k\right\}$
Case (vi): If $n=6 p+5, S_{h}=\left\{c_{1}, c_{2}, c_{6 q-1}, c_{6 q}, p_{6 s+2}, p_{6 s+3} / q=1,2 \ldots \ldots, p \& s=0,1,2, \ldots \ldots, k\right\}$
When $m=6 p+3$, the minimality of S_{h} follows as theorem (2) \& (3) and $\left|S_{h}\right|=\gamma_{h}\left(T_{m, n}\right)=\left\{\begin{array}{lr}2 p+2 k+2 & \text { if } n=6 k+r, 0 \leq r \leq 4 \\ 2 p+2 k+4 & \text { if } n=6 k+5 .\end{array}\right.$

Theorem 3.6: When $m=6 p+4$, the hop domination of a tadpole graph T_{m}, is given by

$$
\begin{array}{cc}
2 p+2 k+2 & \text { if } n=6 k+r, 0 \leq r \leq 3 \\
\gamma_{h}\left(T_{m, n}\right)=\{2 p+2 k+3 & \text { if } n=6 k+4 \\
2 p+2 k+4 & \text { if } n=6 k+5
\end{array}
$$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case (i): If $n=6 p, S_{h}=\left\{c_{6 q+1}, c_{6 q+2}, p_{6 s-3}, p_{6 s-2} / q=0,1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$

Case (ii): If $n=6 p+1, S_{h}=\left\{c_{6 q+2}, c_{6 q+3}, p_{6 s-2}, p_{6 s-1} / q=0,1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (iii): If $n=6 p+2, S_{h}=\left\{c_{6 q+3}, c_{6 q+4}, p_{6 s-1}, p_{6 s} / q=0,1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (iv): If $n=6 p+3, S_{h}=\left\{c_{6 q+4}, c_{6 q+5}, p_{6 s^{\prime}} p_{6 s+1} / q=0,1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (v): If $n=6 p+4, S_{h}=\left\{c_{2}, c_{6 q-1}, c_{6 q}, p_{6 s+1}, p_{6 s+2} / q=1,2 \ldots \ldots, p \& s=0,1,2, \ldots \ldots, k\right\}$
Case (vi): If $n=6 p+5, S_{h}=\left\{c_{1}, c_{2}, c_{6 q}, c_{6 q+1}, p_{6 s+1}, p_{6 s+2} / q=1,2 \ldots \ldots, p \& s=0,1, \ldots \ldots, k\right\}$
When $m=6 p+4$, the minimality of S_{h} follows as in theorem (3.2) \& (3.3) and

$$
\left|S_{h}\right|=\gamma_{h}\left(T_{m, n}\right)=\{2 p+2 k+2 \text { if } n=6 k+r, 0 \leq r \leq 3, ~=2 k+3 \quad \text { if } n=6 k+4 .
$$

Theorem 3.7: When $m=6 p+5$, the hop domination of T_{m}, is given by

$$
\gamma_{h}\left(T_{m, n}\right)= \begin{cases}2 p+2 k+2 & \text { if } n=6 k+r, 0 \leq r \leq 3 \\ 2 p+2 k+4 & \text { if } n=6 k+r, r=4 \text { and } 5\end{cases}
$$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case (i): If $n=6 p, S_{h}=\left\{c_{6 q+2}, c_{6 q+3}, p_{6 s-3}, p_{6 s-2} / q=0,1,2 \ldots \ldots, p \& s=1,2, \ldots \ldots, k\right\}$
Case (ii): If $n=6 p+1, S_{h}=\left\{c_{6 q+3}, c_{6 q+4}, p_{6 s-2}, p_{6 s-1} / q=0,1,2 \ldots \ldots, p \& s=1,2 \ldots \ldots, k\right\}$
Case (iii): If $n=6 p+2, S_{h}=\left\{c_{6 q+4}, c_{6 q+5}, p_{6 s-1}, p_{6 s} / q=0,1,2 \ldots \ldots, p \& s=1,2 \ldots \ldots, k\right\}$
Case (iv): If $n=6 p+3, S_{h}=\left\{c_{6 q}, c_{6 q-1}, p_{6 s^{\prime}} p_{6 s+1} / q=1,2 \ldots \ldots, p \& s=0,1,2 \ldots \ldots, k\right\}$
Case (v): If $n=6 p+4, S_{h}=\left\{c_{2}, c_{3}, c_{6 q}, c_{6 q+1}, p_{6 s+1}, p_{6 s+2} / q=1,2 \ldots \ldots, p \& s=0,1,2 \ldots \ldots, k\right\}$
Case (vi): If $n=6 p+5, S_{h}=\left\{c_{6 q+3}, c_{6 q+4}, p_{6 s+2}, p_{6 s+3} / q=0,1,2 \ldots \ldots, p \& s=0,1,2 \ldots \ldots, k\right\}$
When $m=6 p+5$, the minimality of S_{h} follows as in theorem (2) and (3), Hence $\left|S_{h}\right|=\gamma_{h}\left(T_{m, n}\right)= \begin{cases}2 p+2 k+2 & \text { if } n=6 k+r, 0 \leq r \leq 3 \\ 2 p+2 k+4 & \text { if } n=6 k+r, r=4 \text { and } 5 \text {. }\end{cases}$

Theorem 3.8: For $n=2$ the hop domination of a Tadpole graph T_{m}, is given by

$$
\begin{array}{cr}
2 p & \text { if } m=6 p \\
\gamma_{h}\left(T_{m, 2}\right)=\{2 p+1 & \text { if } m=6 p+1 \\
2 p+2 & \text { if } m=6 p+r, 2 \leq r \leq 5
\end{array}
$$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case (i): $m=6 p$, Let $S_{h}=\left\{c_{6 q}, c_{6 q-1} / q=1,2, \ldots k\right\}$
(a) If $v=c_{6 q}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{2}, p_{2}, c_{6 q+2}, c_{6 q-2}\right\}$.
(b) If $v=c_{6 q-1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{1}, p_{1}, c_{6 q+1}, c_{6 q-3}\right\}$

Thus $S_{h}{ }^{\prime}$ is not minimum. Hence S_{h} is the hop dominating set and $\left|S_{h}\right|=2 p$.
Case (ii): $m=6 p+1$, Let $S_{h}=\left\{c_{3}, c_{6 q}, c_{6 q+1} / q=1,2, \ldots k\right\}$
(a) If $v=c_{3}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating c_{3}. (b) If $v=c_{6 q}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{1}, p_{1}, c_{6 q+2}, c_{6 q-2}\right\}$. (c) If $v=c_{6 q+1}, \exists$ no vertex in S_{h}^{\prime} hop dominating with at least one of the vertex of $\left\{c_{2}, p_{2}, c_{6 q+3}, c_{6 q-1}\right\}$.

Thus S_{h} is the hop dominating set and $\left|S_{h}\right|=2 p+1$.
Case (iii): $m=6 p+2$, Let $S_{h}=\left\{c_{6 q+1}, c_{6 q+2} / q=0,1, \ldots k\right\}$.
(a) If $v=c_{6 q+2}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{6 q+1}, c_{6 q-1}\right.$ or $\left.p_{1}\right\}$.
(b) If $v=c_{6 q+1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{6 q}, c_{6 q+4}\right.$ or $\left.p_{2}\right\}$

Thus S_{h} is the hop dominating set and $\left|S_{h}\right|=2 p+2$
Case (iv): $m=6 p+3$, Let $S_{h}=\left\{c_{6 q+2}, c_{6 q+3} / q=0,1, \ldots k\right\}$
(a) If $v=c_{6 q+2}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{6 q}, c_{6 q+4}, p_{1}\right\}$.
(b)If $v=c_{6 q+3}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{6 q-1}, c_{6 q+5}, p_{2}\right\}$.

Thus S_{h} is the hop dominating set and $\left|S_{h}\right|=2 p+2$
Case (v): $m=6 p+4$, Let $S_{h}=\left\{c_{6 q+3}, c_{6 q+4} / q=0,1, \ldots k\right\}$
(a) If $v=c_{6 q+3}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{6 q-1}, c_{6 q+5}, p_{1}\right\}$.
(b) If $v=c_{6 q+4}, \exists$ no vertex in D^{\prime} hop dominating with at least one of the vertex of $\left\{c_{6 q-2}, c_{6 q+6}, p_{2}\right\}$.

Thus S_{h} is the hop dominating set and $\left|S_{h}\right|=2 p+2$.

Case (vi): $m=6 p+5$, Let $S_{h}=\left\{c_{6 q+4},{ }^{{ }^{c_{6 q+5}}} q=0,1, \ldots k\right\}$
(a) If $v=c_{6 q+4}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{6 q-2}, c_{6 q+6}, p_{1}\right\}$.
(b) If $v=c_{6 q+5}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex of $\left\{c_{6 q-3}, c_{6 q+7}, p_{2}\right\}$.

Thus S_{h} is the hop dominating set and $\left|S_{h}\right|=2 p+2$

$$
\begin{array}{lr}
2 p & \text { if } m=6 p \\
p+1 & \text { if } m=6 p+1 \\
2 p+2 & \text { if } m=6 p+r, 2 \leq r \leq 5
\end{array}
$$

Theorem 3.9: For $n=3$, the hop domination of a Tadpole graph T_{m}, is given by

$$
\gamma_{h}\left(T_{m, 3}\right)=\left\{\begin{array}{lr}
2 p+1 & \text { if } m=6 p \\
2 p+2 \text { if } m=6 p+r, 1 \leq r \leq 5
\end{array}\right.
$$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case (i): $m=6 p$, Let $S_{h}=\left\{c_{6 q}, c_{6 q+1}, p_{1} / q=0,1,2, \ldots k\right\}$
(a) If $v=c_{6 q}, \exists$ no vertex in S_{h}^{\prime} hop dominating with atleast one of the vertices such as of $\left\{c_{2}, c_{6 q+2}, c_{6 q-2}, p_{2}\right\}$. (b) If $v=c_{6 q+1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with atleast one of the vertices such as of $\left\{c_{6 q-3}\right.$ and $\left.c_{6 q-1}\right\}$. (c) If $v=p_{3}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertices such as of $\left\{c_{1}, c_{m-1}\right.$ and $\left.p_{3}\right\}$

Thus S_{h} is the minimal hop dominating set and $\left|S_{h}\right|=2 p+1$
Case (ii): $m=6 p+1$, Let $S_{h}=\left\{c_{6 q}, c_{6 q+1}, p_{1} / q=0,2, \ldots k\right\}$
(a) If $v=c_{6 q+1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with at least one of the vertex such as of $\left\{c_{6 q-1}, c_{6 q+1}, c_{2}, p_{2}\right\}$. (b) If $v=c_{6 q+2}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with atleast one of the vertices such as of $\left\{c_{6 q}\right.$ and $\left.c_{6 q+4}\right\}$. (c) If $v=p_{1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with atleast one of the vertices such as of $\left\{c_{1}, c_{m-1}\right.$ and $\left.p_{3}\right\}$

Thus S_{h} is the minimal hop dominating set and $|D|=2 p+2$
Case (iii): $m=6 p+2$, Let $S_{h}=\left\{c_{6 q+2}, c_{6 q+3}, p_{1} / q=0,1,2, \ldots k\right\}$
Case (iv): $m=6 p+3$, Let $S_{h}=\left\{c_{6 q+3}, c_{6 q+4}, p_{1} / q=0,1,2, \ldots k\right\}$
Case (v): $m=6 p+4$, Let $S_{h}=\left\{c_{6 q+4}, c_{6 q+5}, p_{1} / q=0,1,2, \ldots k\right\}$
Case (vi): $m=6 p+5$, Let $S_{h}=\left\{c_{6 q}, c_{6 q+1}, p_{1} / q=0,1,2, \ldots k\right\}$
The Proof of case (iii) to (vi) follows same as previous cases. Thus S_{h} is the minimal hop-dominating set and $\left|S_{h}\right|=2 p+2$

$$
\text { Thus for } n=3, \gamma_{h}\left(T_{m, 3}\right)=\left\{\begin{array}{lr}
2 p+1 \\
2 p+2 \text { if } m=6 p+r, 1 \leq r \leq 5
\end{array}\right.
$$

Theorem 3.10: For $n=4$, the hop domination of a Tadpole graph T_{m}, is given by

$$
\begin{array}{rr}
2 p+2 & \text { if } m=6 p+r, 0 \leq r \leq 3 \\
\gamma_{h}\left(T_{m, 4}\right)=\{2 p+3 & \text { if } m=6 p+4 \\
2 p+4 & \text { if } m=6 p+5
\end{array}
$$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such
that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case (i): $m=6 p$, Let $S_{h}=\left\{c_{6 q+1}, c_{6 q+2}, p_{1}, p_{2} / q=0,1, \ldots k-1\right\}$
(a) If $v=c_{6 q+1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating $\left\{c_{6 q-1}\right.$ and $\left.c_{6 q+3}\right\}$. (b) If $v=c_{6 q+2}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating $\left\{c_{6 q}\right.$ and $\left.c_{6 q+4}\right\}$. (c) If $v=p_{1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with $\left\{p_{3}\right\}$. (d) If $v=$ p_{2}, \exists no vertex in $S_{h}{ }^{\prime}$ hop dominating with $\left\{p_{4}\right\}$

Thus S_{h} is the minimal hop dominating set and $\left|S_{h}\right|=2 k+2$
Case (ii): $m=6 p+1$, Let $S_{h}=\left\{c_{6 q+4}, c_{6 q+5}, p_{1}, p_{2} / q=0,1, \ldots k-1\right\}$
The Proof is similar to case (i) and $|D|=2 p+2$
Case (iii): $m=6 p+2$, Let $S_{h}=\left\{c_{6 q+3}, c_{6 q+4}, p_{1}, p_{2} / q=0,1,2, \ldots k-1\right\}$
The Proof is similar to case (i) and $\left|S_{h}\right|=2 p+2$
Case (iv): $m=6 p+3$, Let $S_{h}=\left\{c_{6 q+4}, c_{6 q+5}, p_{1}, p_{2} / q=0,1,2, \ldots k-1\right\}$
The Proof is similar to case (i) and $\left|S_{h}\right|=2 p+2$
Case (v): $m=6 p+4$, Let $S_{h}=\left\{c_{2}, c_{6 q-1}, c_{6 q}, p_{1}, p_{2} / q=1,2, \ldots k\right\}$
(a) If $v=c_{2}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating $\left\{c_{2}\right\}$. (b) If $v=c_{6 q-1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating $\left\{c_{6 q-3}\right.$ and $\left.c_{6 q+1}\right\}$. (c) If $v=c_{6 q}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating $\left\{c_{6 q-2}\right.$ and $\left.c_{6 q+2}\right\}$. (d) If $v=p_{1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with $\left\{p_{3}\right\}$. (e) If $v=p_{2}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with $\left\{p_{4}\right\}$

Thus S_{h} is the minimal hop dominating set and $\left|S_{h}\right|=2 p+3$
Case (vi): $m=6 p+5$, Let $S_{h}=\left\{c_{2}, c_{3}, c_{6 q}, c_{6 q+1}, p_{1}, p_{2} / q=1,2, \ldots k\right\}$
(a) If $v=c_{2}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating $\left\{c_{2}\right\}$. (b) If $v=c_{3}$, ヨ no vertex in $S_{h}{ }^{\prime}$ hop dominating $\left\{c_{3}\right\}$. (c) If $v=c_{6 q}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating $\left\{c_{6 q-2}\right.$ and $\left.c_{6 q+2}\right\}$. (d) If $v=c_{6 q+1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating $\left\{c_{6 q-1}\right.$ and $\left.c_{6 q+3}\right\}$. (e) If $v=p_{1}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with $\left\{p_{3}\right\}$. (f) If $v=p_{2}, \exists$ no vertex in $S_{h}{ }^{\prime}$ hop dominating with $\left\{p_{4}\right\}$

Thus S_{h} is the minimal hop dominating set and $\left|S_{h}\right|=2 p+4$

$$
2 p+2 \text { if } m=6 p+r, 0 \leq r \leq 3
$$

Hence when $n=4, \gamma_{h}\left(T_{m, 4}\right)=\{2 p+3$ if $m=6 p+4$
$2 p+4 \quad$ if $m=6 p+5$

Theorem 3.11: For $n=5$, the hop domination of a Tadpole graph T_{m}, is given by

$$
\begin{array}{rr}
2 p+2 & \text { if } m=6 p+r, r=0,1 \\
\gamma_{h}\left(T_{m, 4}\right)=\left\{\begin{array}{r}
\text { if } m=6 p+2 \\
2 p+3 \\
2 p+5
\end{array} \text { if } m=6 p+r, 3 \leq r \leq 5\right.
\end{array}
$$

Proof: Let S_{h} be the hop dominating set of $T_{m, 1}$. The minimality of S_{h} follows from theorem(3.1) using the contrary of this theorem. If S_{h} is not a minimal hop dominating set then there exists $v \in S_{h}$ such that $S_{h}{ }^{\prime}=S_{h}-\{v\}$ is a hop dominating set of $T_{m, 1}$. Therefore for all $u \in N^{\prime}[v]$ there exists $v^{\prime} \in u \in N^{\prime}[v]-\{v\}, v^{\prime} \in N^{\prime}[v]$.

Case (i): If $m=6 p, \quad$ Let $S_{h}=\left\{c_{6 q+2}, c_{6 q+3}, p_{2}, p_{3} / q=0,1, \ldots k-1\right\}$
Case (ii): If $m=6 p+1, \quad$ Let $S_{h}=\left\{c_{6 q+3}, c_{6 q+4}, p_{2}, p_{3} / q=0,1,2, \ldots k-1\right\}$
Case (iii): If $m=6 p+2, \quad$ Let $S_{h}=\left\{c_{6 q+4}, c_{6 q+5}, p_{2}, p_{3} / q=0,1,2, \ldots k-1\right\}$
Case (iv): If $m=6 p+3, \quad$ Let $S_{h}=\left\{c_{3}, c_{6 q-1}, c_{6 q}, p_{2}, p_{3} / q=1,2, \ldots k\right\}$
Case (v): If $m=6 p+4, \quad$ Let $S_{h}=\left\{c_{2}, c_{3}, c_{6 q}, c_{6 q+1}, p_{2}, p_{3} / q=1,2, \ldots k\right\}$
Case (vi): If $m=6 p+5, \quad$ Let $S_{h}=\left\{c_{6 q+1}, c_{6 q+2}, p_{2}, p_{3} / q=0,1, \ldots k\right\}$. The proof follows as the previous theorem.

Theorem 3.12: $\gamma_{h}\left(T_{m, n}\right)=\gamma_{h}\left(T_{n, m}\right)$ iff $m=n$.
Proof: Let $m=n$, then T_{m}, and $T_{n, m}$ are same graphs. Hence $\gamma_{h}\left(T_{m, n}\right)=\gamma_{h}\left(T_{n, m}\right)$. On the other hand, assume $\gamma_{h}\left(T_{m, n}\right)=\gamma_{h}\left(T_{n, m}\right)$, suppose if $m \neq n$, then by theorems(--) $\gamma_{h}\left(T_{m, n}\right) \neq \gamma_{h}\left(T_{n, m}\right)$. Thus $\gamma_{h}\left(T_{m, n}\right)=\gamma_{h}\left(T_{n, m}\right)$ iff $m=n$.

Corollary: $\gamma_{h}\left(T_{m, n}\right)=\gamma_{h}\left(T_{n, m}\right)=m-1$ (or) $n-1$ iff $m=n$, where $m=n=3,4,5$. and $\gamma_{h}\left(T_{m, n}\right)=\gamma_{h}\left(T_{n, m}\right) \leq m-1$ (or) $n-1$ iff $m=n$, where $m=n=6$.

Proof:

| S.No. | Tadpole Graph
 $\left(\boldsymbol{T}_{\boldsymbol{m}, \mathrm{n}), \boldsymbol{m}=\boldsymbol{n}}\right.$ | Graph | $\boldsymbol{\gamma}_{\boldsymbol{h}}(\boldsymbol{G})$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathrm{~m}=\mathrm{n}=3, T_{3,3}$ | 2 or (n-1) | |
| 2 | | | |

4	$\mathrm{m}=\mathrm{n}=6, T_{6,6}$		4 or $\leq(n-1)$

From the table we get $\gamma_{h}\left(T_{m, n}\right)=\gamma_{h}\left(T_{n, m}\right)=m-1$ (or) $n-1$ iff $m=n$, where
$m=n=3,4,5$. And $\gamma_{h}\left(T_{m, n}\right)=\gamma_{h}\left(T_{n, m}\right) \leq m-1$ (or) $n-1$ iff $m=n$, where $m=n=6$.

Conclusion

In this paper, we have found the hop domination number of Tadpole graph and derivedsome theorems on it.

References

[1]. Harary,F., Graph Theory, ed. 1, Addison-Welsley, 1969.
[2]. S.Alikhani and Y.H.Peng, Dominating sets and Domination polynomials of Paths, International Journal of Mathematics and Mathematical Science,(2009).
[3]. C.Natarajan, S.K.Ayyaswamy and G.Sathiamoorthy, A note on hop domination number of some special families of graphs, International Journal of Pure and Applied Mathematics Vol 119, No.12, 2018, 14165-14171.
[4]. M.Al-Harere and P.A. Khuda Bakhash, Changes of tadpole domination number upon changing of graphs, Sci.Int.(Lahore),31(2),197-199, 2019. ISSN 1013-5316; CODEN: SINTE 8.
[5]. A.Vijayan and T.Nagarajan, Vertex-Edge Domination Polynomials of Lollipop Graphs $L_{n, 1}$, International Journal of Scientific and Innovaitve Mathematical Research(IJSIMR), Vol.-3, Issue 4, April 2015, PP 39-44, ISSN 2347-307X(Print) \& ISSN 2347-3142(Online).
[6]. Ayhan A.Khalil and Omar A.Khalil, Determination and Testing the Domination numbers of Tadpole Graph,Book Graph and Stacked Book Graph Using MATLAB, College of Basic Education Researchers Journal Vol.10, No.1.
[7]. Nigar Siddiqui, Mohit James, Domijnation and Chromatic Number of Pan Graph and Lollipop Graph, International Journal of Technical Innovation in Modern Engineering \& Science(IJTIMES), Impact factor:5.22(SJIF-2017), e-ISSN:2455-2585, Vol-4, Issue 6, June-2018.
[8]. M.S.Franklin Thamil Selvi and A.Amutha, A Performance on Harmonious Coloring of Barbell Graph, International Journal of Engineering and Advanced Technology (IJEAT), ISSN:2249-8958, Vol.-9, Issue-1,October 2019.
[9]. S.Nagarajan, Aswini.B and Vijaya.A, Upper Bound of Hop Domination number for Regular Graphs of Even degree, ANVESAK, ISSN:0378-4568, Vol. 51, No.1(X) January-June 2021.
[10]. S.Nagarajan, Vijaya.A and Aswini.B, Lower Bound of Hop Domination Number for Regular Graphs of Odd degree, ANVESAK, ISSN:0378-4568, Vol. 51, No.1(X) January-June 2021.
[11]. Kulli.V.R. and Janakiram.B, The Nonsplit Domination Number of A Graph, Indian J.Pure Appl.Math. Vol.31,No.5, pp.545-550.

