Analysis of the tadpole graph $T_{m,n}$ cardinality of hop dominance number

¹.M.Suneetha Rani, ²Sk.Jhansi Begum, ³B.Srinivasa Rao

^{1,2,3}Assistant Professor, Dept. of BS &H, Newton's Institute of Engineering, Macherla, Andhra Pradesh, India.

Abstract

Make $T_{m,n}$ a tadpole graph. If there is an u in S_h such that d(u, v) = 2 for all v in V S_h , then the set $S_h V(T_{m,n})$ is a hop dominating set of $T_{m,n}$. The hop domination number of G is the minimal cardinality of a hop dominating set of G and is represented by the symbol $h(T_{m,n})$. In this essay, we spoke about the tadpole graph's hop dominance number.

Keywords: hop-domination, hop-domination number, Tadpole graph, neighbourhood.

1. Introduction

[6] The graph created by connecting a cycle graph and a route graph with a bridge is known as the Tadpole graph (Truszczynski 1984) or Kite graph (Kim and Park 2006). $T_{m,n}$ serves as a sign for it. In specifically, $T_{3,1}$ and $T_{4,1}$ of the Tadpole graph ($T_{m,1}$) are referred to as the Paw graph and Banner graph, respectively. the graph of the generalized tadpole

Let us denote the vertices of a Tadpole graph as two distinct sets:

- (i) Refer the vertices of the cycle graph C_m as $\{v_1, v_2, \dots, v_m\}$ and
- (ii) The Vertices of the Path graph P_n as $\{u_1, u_2, \dots u_n\}$

: The vertices of T_{m} are

$$V(T_{m,n}) = V(C_m) \cup V(P_n)$$

$$= \{v_1, v_2, \dots v_m, u_1, u_2, \dots u_n\}$$

Theorem 1.1 ([11] p.546): A dominating set D of a graph G is minimal iff for each vertex $v \in D$, one of the following conditions satisfied,

(i) There exists a vertex $u \in V - D$ such that $(u) \cap D = \{v\}$

(ii) v is an isolated vertex in D.

[3] A subset S_h of $(T_{m,n})$ is a hop dominating set of $T_{m,n}$ if for all v in $V - S_h$, there exists u in S_h such that (u, v) = 2. The minimum cardinality of a hop dominating set of G is called the hop domination number of G

and is denoted by $\gamma_h(T_{m,n})$. For any vertex $v \in (T_{m,n})$, the open neighbourhood of v is the set $N(v) = \{u \in (T_{m,n}) | uv \in E(T_{m,n})\}$ and the closed neighbourhood is $N[v] = N(v) \cup \{v\}$. For a set $S_h \subseteq (T_{m,n})$, theopen neighbourhood of S_h is $N(S_h) = \bigcup_{v \in S_h} N(v)$ and the closed neighbourhood is $N[S_h] = N(S_h) \cup S_h$. A set $S_h \subseteq (T_{m,n})$ is hop dominating set if $N[S_h] = V(T_{m,n})$.

2. Diagrammatic discussion on Hop domination number of Tadpole Graph

S.No.	Pan Graph (P _n)	Graph	$\gamma_h(G)$
1	n=3, <i>P</i> ₃	v1 v2 v3 v1 v3 v1 v3 v1	2
2	n=4, P ₄		2
3	n=5, <i>P</i> ₅	V ₃ V ₄ V ₅ U ₁	2
4	n=6, P ₆		3
5	n=7, <i>P</i> ₇		3
6	n=8, P ₈	V3 V2 V1 V8 U1 V5 V6 V7	4
7	n=9, <i>P</i> ₉		4

S.No.	Tadpole Graph (T) m = 2	Graph	$\gamma_h(G)$
1	$n=1, T_{3,1}$ (paw graph)		2
2	n=2, T _{3,2}		2
3	n=3, T _{3,3}		2
4	n=4, T _{3,4}		2
5	n=5, T _{3,5}		3
6	n=6, T _{3,6}		4
7	n=7, T _{3,7}		4
8	n=8, T _{3,8}		4

Table 2.2: Tadpole Graph (T_{m_i}) , m = 3

	Tadpole Graph		
S.No.	$(T_{m,n})$, $m = 4$	Graph	$\boldsymbol{\gamma}_h(\boldsymbol{G})$
1	n=1, T _{4,1} (Banner graph)		2
2	n=2, T _{4,2}	$\begin{array}{c} \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_4 \\ \mathbf{v}_2 \\ \mathbf{v}_4 \\ \mathbf{v}_2 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_1 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_1 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_1 \\ \mathbf{v}_1 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_1 \\ \mathbf{v}_$	2
3	n=3, T _{4,3}	$\begin{array}{c} v_2 \\ v_3 \\ v_4 \\ v_4 \\ v_4 \\ v_3 \\ v_4 \\ v_4 \\ v_3 \\ v_3 \\ v_4 \\ v_3 \\ v_3 \\ v_4 \\ v_3 \\ v_4 \\ v_3 \\ v_4 \\ v_3 \\ v_4 \\ v_4 \\ v_3 \\ v_3 \\ v_4 \\ v_3 \\ v_4 \\ v_4 \\ v_3 \\ v_3 \\ v_4 \\ v_4 \\ v_5 \\$	2
4	n=4, T _{4,4}		3
5	n=5, T _{4,5}	$ \begin{array}{c} \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \\ \mathbf{v}_{4} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \\ \mathbf{v}_{5} \\ v$	4
6	n=6, T _{4,6}	$\begin{array}{c} \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \\ \mathbf{v}_{4} \\ \mathbf{v}_{4} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \\ \mathbf{v}_{5} \\ \mathbf{v}_{6} \\ \mathbf{v}$	4
7	n=7, T _{4,7}	$\begin{array}{c} v_2 \\ v_3 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_5 \\ v_6 \\ v_6 \\ v_7 \\ v_8 \\$	4

Table 2.3: Tadpole Graph $(T_{m_i}), m = 4$

Table 2.4: Tadpole Graph (T_{m_i}) , m = 5

3. Results on Hop domination number of Tadpole graph $T_{m,n}$

Theorem 3.1: For m-pan graph, the hop domination number is given by 2piff m = 6p $\gamma_h = \{ 2p+1$ if m = 6p + 12p + 2 *if* $m = 6p + r, 2 \le r \le 5$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(1.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case(i): If m=6p.

Let
$$S_h = \{c_{6k-5}, c_{6k-4} | k = 1, 2, ..., p\}.$$
 \rightarrow (1)

If $v = c_{6k-5}$, then atleast one vertex of $\{p_1, c_{m-1}, c_{6k-3}, c_{6k-7} | k = 1, 2, ..., p\}$ is not hop dominating with any vertex in S_h' . If $v = c_{6k-4}$, then atleast one vertex of $\{c_m, c_{6k-6}, c_{6k-2} | k = 1, 2, ..., p\}$ is not hop dominated by any vertex in S_h' . Therefore, S_h' is not a hop dominating set. Hence S_h is the minimum. Since for each k, $1 \le k \le p$, there exists c_{6k-5}, c_{6k-4} in $|S_h| = 2p$. $\gamma_h(T_{m,1}) = 2p$ if m = 6p.

Conversely, If $\gamma_h(T_{m,1}) = 2p = |S_h|$, where S_h is given by an equation (1). Hence $V - S_h = \{c_{6k-2}, c_{6k-3}, c_{6k-6}, c_{6k-7}, p_1 \mid k = 1, 2, ..., p\}$. $|V - S_h| = 4p + 1$. We know that $V = (V - S_h) \cup S_h$, therefore |V| = 4p + 1 + 2p = 6p + 1. Hence m = 6p.

Thus $\gamma_h(T_{m,1}) = 2p \ iff \ m = 6p$.

Case(ii): If m=6p+1.

Let $S_h = \{c_{6k-5}, c_{6k-4}, c_{m-2} | k = 1, 2, ..., p\}.$

If $v = c_{6k-5}$ or c_{6k-4} , the minimality of S_h follows from the above case(i) or else if $v = c_{m-2}$, there is no vertex in S_h' hop dominating with c_{m-2} . Hence S_h' is not a hop dominating set. Thus S_h is minimum and for each k, $1 \le k \le p$, there exists c_{6k-5} , c_{6k-4} in S_h and there exists c_{m-2} in S_h independent of k. Therefore $|S_h| = 2k + 1$. $\gamma_h(T_{m,1}) = 2p + 1$ if m = 6p + 1.

Case(iii): If m=6p+2.

Let $S_h = \{c_{6k-5}, c_{6k-4}, c_{m-2}, c_{m-3} | k = 1, 2, ..., p\}.$

If $v = c_{6k-5}$ or c_{6k-4} , the minimality of S_h follows from the above case(i) or else if $v = c_{m-2}$ or c_{m-3} there is no vertex in S_h' hop dominating with c_{m-2} or c_{m-3} respectively. Hence S_h' is not a hop dominating set. Thus S_h is minimal hop dominating set and for each k, $1 \le k \le p$, there exists c_{6k-5} , c_{6k-4} in $V - S_h$ and there exists c_{m-2} , c_{m-3} in S_h independent of k. Therefore $|S_h| = 2k + 2$.

Case(iv): If m=6p+3.

Let $S_h = \{c_{6k-5}, c_{6k-4}, c_{m-2}, c_{m-3} | k = 1, 2, ..., p\}.$

If $v = c_{6k-5}$ or c_{6k-4} or c_{m-2} , the minimality of S_h follows from the above case(i) and case (iii) or if $v = c_{m-3}$ there is no vertex in S_h' hop dominating c_{m-5} in $V - S_h'$. Therefore $|S_h| = 2k + 2$.

Case (v): If m=6p+4 and 6p+5.

Let $S_h = \{c_{6k-5}, c_{6k-4} | k = 1, 2, ..., p\}$. The minimality of S_h follows from case(i) and $|S_h| = 2(2p + 1) = 2p + 2$. Hence $\gamma_h(T_{m,1}) = 2p + 2$ if $m = 6p + r, 2 \le r \le 5$.

Let us indicate the vertices of T_m , as two sets first to refer the vertices of cycle graph C_m as $\{c_1, c_2, ..., c_m\}$ and the second to refer the vertices of path graph P_n as $\{p_1, p_2, ..., p_n\}$. So the vertices of T_m , is denoted as $V(T_{m,n}) = \{\{c_1, c_2, ..., c_m\} \cup \{p_1, p_2, ..., p_n\}\}$. Let the dominating set of T_m , be S_h .

Theorem 3.2: When m=6p, the hop domination of a tadpole graph T_{m} , is given by

$$\begin{array}{ccc} 2p+2k & \ if & n=6k+r, 0 \leq r \leq 2\\ \gamma_h(T_{m,n}) = \{ 2p+2k+1 & \ if & n=6k+3\\ 2p+2k+2 & \ if & n=6k+r, r=4, 5 \end{array}$$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$

such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case(i): If n=6k

Let $S_h = \{c_{6q-2}, c_{6q-3}, p_{6s-2}, p_{6s-2} | q = 1, 2, ..., m \text{ and } s = 1, 2, ..., p\}$

If $v = c_{6q-2}$, then there is no vertex in S_h' hop dominating c_{6q-4} and c_{6q} . If $v = c_{6q-3}$, then there is no vertex in S_h' hop dominating c_{6q-5} and c_{6q-1} . If $v = c_{6s-2}$, then there is no vertex in S_h' hop dominating c_{6s-4} and c_{6s} . If $v = c_{6s-3}$, then there is no vertex in S_h' hop dominating c_{6s-4} and c_{6s-5} .

Thus S_h' is not minimal hop dominating set. Hence S_h is the minimal hop dominating set.

Case(ii): If n=6k+1

Let $S_h = \{c_{6q-5}, c_{6q-4}, p_{6s-1}, p_{6s-2} | q = 1, 2, ..., m \text{ and } s = 1, 2, ..., p\}$

If $v = c_{6q-5}$, there is no vertex in S_h' hop dominating c_{6q-3} , c_{6q-7} . In particular, If q = 1, there is no vertex in S_h' hop dominating c_{m-1} , c_3 and p_1 . If $v = c_{6q-4}$, there is no vertex in S_h' hop dominating c_{6q-2} and c_{6q-6} . In particular, If q = 1, there is no vertex in S_h' hop dominating c_m and c_4 . If $v = p_{6s-1}$, there is no vertex in S_h' hop dominating p_{6s-4} and p_{6s-4} and p_{6s-4} .

Thus S_h' is not minimal hop dominating set. Hence S_h is the minimal hop dominating set.

Case(iii): n=6k+2

Let $S_h = \{c_{6q}, c_{6q-1}, p_{6s}, p_{6s-1} | q = 1, 2, ..., m \text{ and } s = 1, 2, ..., p\}$

(i) If $v = c_{6q}$, there is no vertex in S_h' hop dominating c_{6q+2} and c_{6q-2} . In particular, If $v = c_m$, there is no vertex in S_h' hop dominating c_2 , c_{m-2} and p_2 . (ii) If $v = c_{6q-1}$, there is no vertex in S_h' hop dominating c_{6q+1} and c_{6q-3} . In particular, If $v = c_{m-1}$, there is no vertex in S_h' hop dominating c_1 , c_{m-3} and p_1 .(iii) If $v = p_{6s}$, there is no vertex in S_h' hop dominating p_{6s-2} and p_{6s+2} . If $v = p_{6s-1}$, there is no vertex in S_h' hop dominating p_{6s-3} and p_{6s+1} .

In the above cases (i), (ii) and (iii) for each $q, 1 \le q \le m$, there exists c_i and c_{i+1} in S_h and for each $s, 1 \le s \le p$, there exists p_i and p_{i+1} in S_h , hence $|S_h| = 2p + 2k$.

Thus $\gamma_h(T_{m,n}) = 2p + 2k$ if m = 6p and $n = 6k + r, 0 \le r \le 2$.

Case(iv): If n=6k+3.

Let $S_h = \{c_{6q}, c_{6q+1}, p_{6s}, p_{6s+1} | q = 0, 1, ..., m \text{ and } s = 0, 1, 2, ..., p\}$

(i): If $v = c_1$, there is no vertex in S_h' hop dominating c_3 .(ii): If $v = c_{6q}$, proof follows from (i) of case(iii). (iii): If $v = c_{6q+1}$, there is no vertex in S_h' hop dominating c_{6q-1} , c_{6q+3} . (iv): If $v = p_{6s}$, the proof follows from (iii) of case(iii). (v): If $v = p_{6s+1}$, there is no vertex in S_h' hop dominating p_{6s-1}, p_{6s+3} .

Hence S_h' is not minimum. Thus S_h is the hop dominating set and $|S_h| = 2p + 2k + 1$.

Thus $\gamma_h(T_{m,n}) = 2p + 2k + 1$ if m = 6p and n = 6k + 3.

Case(v): If n=6k+4.

Let $S_h = \{c_1, c_2, c_{6q+1}, c_{6q+2}, p_{6s+1}, p_{6s+2} | q = 0, 1, ..., m \text{ and } s = 0, 1, 2, ..., k\}$

(i): If $v = c_1$, the proof follows from (i) of case(iv). (ii): If $v = c_2$, there is no vertex in S_h' hop dominating c_4 . (iii): If $v = c_{6q+1}$, the proof follows from (iii) of case(iv). (iv): If $v = c_{6q+2}$, there is no vertex in S_h' hop dominating c_{6q} and c_{6q+1} . (v): If $v = p_{6s+1}$, the proof follows from (v) of case(iv). (vi): If $v = p_{6s+2}$, there is no vertex in S_h' hop dominating p_{6s} and p_{6s+4} .

Case(vi): If n=6k+5

Let $S_h = \{c_{6q+2}, c_{6q+3}, p_{6s+2}, p_{6s+3} | q = 0, 1, ..., m - 1 \text{ and } s = 0, 1, 2, ..., k\}$

(i): If $v = c_{6q+2}$, there is no vertex in S_h' hop dominating c_{6q+4} and c_{6q} . (ii): If $v = c_{6q+3}$, there is no vertex in S_h' hop dominating c_{6q+5} and c_{6q+1} . (iii): If $v = p_{6s+2}$, the proof follows from (iv) of case(v). (iv): If $v = p_{6s+3}$, there is no vertex in S_h' hop dominating p_{6s+5}, p_{6s+1} .

In case (v) and (vi), S_h' is not minimum. Thus S_h is the hop dominating set and $|S_h| = 2p + 2k + 2$ if m = 6p and n = 6p + r, r = 4 and 5.

Thus $\gamma_h(T_{m,n}) = 2p + 2k + 2$ if m = 6p and n = 6p + r, r = 4 and 5.

Theorem 3.3: When m = 6p + 1, the hop domination of a tadpole graph, T_{m} , is given by, $\gamma_h(T_{m,n}) = \{ \begin{array}{l} 2p + 2k + 1 & \text{if } n = 6k + r, \ 0 \le r \le 2 \\ 2p + 2k + 2 & \text{if } n = 6k + r, \ 3 \le r \le 5 \end{array} \}$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case(i): n=6k., Let $S_h = \{c_1, c_{6q-2}, c_{6q-1}, p_{6s-3}, p_{6s-2} | q = 1, 2, ..., p \& s = 1, 2, ..., k\}$

If $v = c_1$, there is no vertex in S_h' hop dominating c_1 . If $v = c_{6q-2}$ or c_{6q-1} or p_{6s-3} or p_{6s-2} , the proof follows from case(i) of theorem (3.3). Thus S_h' is not minimal.

Case(ii): n=6k+1. Let $S_h = \{c_2, c_{6q-1}, c_{6q}, p_{6s-1}, p_{6s-2} | q = 1, 2, ..., p \& s = 1, 2, ..., k\}$

If $v = c_2$, there is no vertex in S_h' hop dominating c_2 . If $v = c_{6q}$ or c_{6q-1} , the proof follows from case(iii) of theorem (3.3). If $v = p_{6s-3}$ or p_{6s-2} , the proof follows from case(ii) of theorem (3.3).

Therefore, S_h' is not minimal.

Case(iii): n = 6k+2. Let $S_h = \{c_1, c_{6q}, c_{6q+1}, p_{6s}, p_{6s-1} | q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$.

If $v = c_1 \text{ or } c_{6q} \text{ or } c_{6q+1} \text{ or } p_{6s}$, the proof follows from case(iv) of theorem (3.3). If $v = p_{6s-1}$, the proof follows from subcase (iv) of case(iii) of theorem (3.3).

Therefore, S_h' is not minimal. Hence S_h is hop dominating set and $|S_h| = 2p + 2k + 1$ if $n = 6k + r, 0 \le r \le 2$.

Case(iv): n=6k+3. Let $S_h = \{c_3, c_4, c_{6q-4}, c_{6q-5}, p_{6s}, p_{6s+1} | q = 2, ..., p + 1 \& s = 0, 1, 2, ..., k\}.$

If $v = c_3$ or c_4 , the proof follows from case(v) of theorem (3.3). If $v = c_{6q-4}$ or c_{6q-5} , the proof follows from case(iii) of theorem (3.3). If $v = p_{6s}$ or p_{6s+1} , the proof follows from case(iv) of theorem (3.3).

Case(v): n=6k+4. Let $S_h = \{c_{6q-3}, c_{6q-4}, p_{6s+1}, p_{6s+2} | q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}.$

If $v = c_{6q-3}$, the minimality of *D* follows from case(i) of theorem (3.3) or else if $v = c_{6q-4}$, it follows from case (ii) of theorem(3.3). If $v = p_{6s+1}$ or p_{6s+2} , the minimality of S_h follows from case(iv) of theorem(3).

Case(vi): n=6k+5. Let $S_h = \{c_{6q-2}, c_{6q-3}, p_{6s+2}, p_{6s+3} | q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}.$

If $v = c_{6q-2}$ or c_{6q-3} , the minimality of S_h follows from case(i) of theorem(3.3). If $v = p_{6s+2}$ or p_{6s+3} , the minimality of S_h follows from case(vi) of theorem (3.3).

Hence S_h is the hop dominating set and $|S_h| = 2p + 2k + 2$ if $n = 6k + r, 3 \le r \le 5$. Thus when $m=6p+1, \gamma_h(T_{m,n}) = \{ 2p + 2k + 1 \text{ if } n = 6k + r, 0 \le r \le 2 \\ 2p + 2k + 2 \text{ if } n = 6k + r, 3 \le r \le 5. \}$

Theorem 3.4: When m = 6p + 2, the hop domination of T_{m} is given

$$\gamma_h(T_{m,n}) = \begin{cases} 2p + 2k + 2 & \text{if } n = 6k + r, 0 \le r \le 4\\ 2p + 2k + 3 & \text{if } n = 6k + 5 \end{cases}$$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case (i): If n = 6k, $S_h = \{c_1, c_2, c_{6q-1}, c_{6q}, p_{6s-3}, p_{6s-2} / q = 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (ii): If
$$n = 6k + 1$$
, $S_h = \{c_2, c_3, c_{6q}, c_{6q+1}, p_{6s-2}, p_{6s-1} / q = 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (iii): If
$$n = 6k + 2$$
, $S_h = \{c_3, c_4, c_{6q+1}, c_{6q+2}, p_{6s-1}, p_{6s} / q = 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (iv): If
$$n = 6k + 3$$
, $S_h = \{c_{6q+2}, c_{6q+3}, p_{6s}, p_{6s+1} / q = 0, 1, \dots, p \& s = 0, 1, \dots, k\}$

Case (v): If n = 6k + 4, $S_h = \{c_{6q-3}, c_{6q-2}, p_{6s+1}, p_{6s+2} / q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}$

When m = 6p + 2, the minimality of S_h follows as the previous theorem and $|S_h| = 2p + 2k + 2$ if $n = 6k + r, 0 \le r \le 4$.

Case (vi): n = 6k + 5, $S_h = \{c_1, c_{6q-1}, c_{6q-2}, p_{6s+2}, p_{6s+3} / q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}$

When m = 6p + 2 and n = 6k + 5, the S_h is the hop dominating set as of from the previous theorems and $|S_h| = 2p + 2k + 3$.

Thus when = 6p + 2, $(T_{m,n}) = \begin{cases} 2p + 2k + 2 & \text{if } n = 6k + r, 0 \le r \le 4\\ 2p + 2k + 3 & \text{if } n = 6k + 5. \end{cases}$

Theorem 3.5: When m = 6p + 3, the hop domination of T_{m} is given

$$\gamma_h(T_{m,n}) = \begin{cases} 2p + 2k + 2 & \text{if } n = 6k + r, 0 \le r \le 4\\ 2p + 2k + 4 & \text{if } n = 6k + 5 \end{cases}$$

Proof:

Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case (i): If n = 6p, $S_h = \{c_2, c_3, c_{6q}, c_{6q+1}, p_{6s-3}, p_{6s-2} / q = 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (ii): If n = 6p + 1, $S_h = \{c_{6q+1}, c_{6q+2}, p_{6s-2}, p_{6s-1} / q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (iii): If n = 6p + 2, $S_h = \{c_{6q+2}, c_{6q+3}, p_{6s-1}, p_{6s} / q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (iv): If n = 6p + 3, $S_h = \{c_{6q-3}, c_{6q-2}, p_{6s}, p_{6s+1} / q = 1, 2, ..., p \& s = 0, 1, ..., k\}$

Case (v): If n = 6p + 4, $S_h = \{c_{6q-2}, c_{6q-1}, p_{6s+1}, p_{6s+2} / q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}$

Case (vi): If n = 6p + 5, $S_h = \{c_1, c_2, c_{6q-1}, c_{6q}, p_{6s+2}, p_{6s+3} / q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}$

When m = 6p + 3, the minimality of S_h follows as theorem (2) & (3) and $|S_h| = \gamma_h(T_{m,n}) = \begin{cases} 2p + 2k + 2 & \text{if } n = 6k + r, 0 \le r \le 4 \\ 2p + 2k + 4 & \text{if } n = 6k + 5. \end{cases}$

Theorem 3.6: When m = 6p + 4, the hop domination of a tadpole graph T_{m_i} is given by

$$2p + 2k + 2 if n = 6k + r, 0 \le r \le 3$$

$$\gamma_h(T_{m,n}) = \{2p + 2k + 3 \qquad if n = 6k + 4$$

$$2p + 2k + 4 \qquad if n = 6k + 5$$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case (i): If n = 6p, $S_h = \{c_{6q+1}, c_{6q+2}, p_{6s-3}, p_{6s-2} / q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (ii): If n = 6p + 1, $S_h = \{c_{6q+2}, c_{6q+3}, p_{6s-2}, p_{6s-1} / q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$ Case (iii): If n = 6p + 2, $S_h = \{c_{6q+3}, c_{6q+4}, p_{6s-1}, p_{6s} / q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$ Case (iv): If n = 6p + 3, $S_h = \{c_{6q+4}, c_{6q+5}, p_{6s}, p_{6s+1} / q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$ Case (v): If n = 6p + 4, $S_h = \{c_{2}, c_{6q-1}, c_{6q}, p_{6s+1}, p_{6s+2} / q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}$ Case (vi): If n = 6p + 4, $S_h = \{c_1, c_2, c_{6q}, c_{6q+1}, p_{6s+1}, p_{6s+2} / q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}$

When m=6p+4, the minimality of S_h follows as in theorem (3.2) & (3.3) and

$$2p + 2k + 2 if n = 6k + r, 0 \le r \le 3$$

|S_h| = $\gamma_h(T_{m,n}) = \{2p + 2k + 3$ if $n = 6k + 4$
 $2p + 2k + 4$ if $n = 6k + 5$.

Theorem 3.7: When m = 6p + 5, the hop domination of T_{m} , is given by

$$\gamma_h(T_{m,n}) = \begin{cases} 2p + 2k + 2 & \text{if } n = 6k + r, 0 \le r \le 3\\ 2p + 2k + 4 & \text{if } n = 6k + r, r = 4 \text{ and } 5 \end{cases}$$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case (i): If
$$n = 6p$$
, $S_h = \{c_{6q+2}, c_{6q+3}, p_{6s-3}, p_{6s-2} / q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (ii): If n = 6p + 1, $S_h = \{c_{6q+3}, c_{6q+4}, p_{6s-2}, p_{6s-1} / q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (iii): If n = 6p + 2, $S_h = \{c_{6q+4}, c_{6q+5}, p_{6s-1}, p_{6s} / q = 0, 1, 2, ..., p \& s = 1, 2, ..., k\}$

Case (iv): If n = 6p + 3, $S_h = \{c_{6q}, c_{6q-1}, p_{6s}, p_{6s+1} / q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}$

Case (v): If n = 6p + 4, $S_h = \{c_2, c_3, c_{6q}, c_{6q+1}, p_{6s+1}, p_{6s+2} / q = 1, 2, ..., p \& s = 0, 1, 2, ..., k\}$

Case (vi): If n = 6p + 5, $S_h = \{c_{6q+3}, c_{6q+4}, p_{6s+2}, p_{6s+3} / q = 0, 1, 2, ..., p \& s = 0, 1, 2, ..., k\}$

When m = 6p + 5, the minimality of S_h follows as in theorem (2) and (3), Hence $|S_h| = \gamma_h(T_{m,n}) = \{ \begin{array}{l} 2p + 2k + 2 & if \ n = 6k + r, \ 0 \le r \le 3 \\ 2p + 2k + 4 & if \ n = 6k + r, \ r = 4 \ and \ 5. \end{array}$

Theorem 3.8: For n = 2 the hop domination of a Tadpole graph T_{m_i} is given by

$$\begin{array}{ccc} 2p & if \ m = 6p \\ \gamma_h(T_{m,2}) \ = \ \{2p \ + \ 1 & if \ m = 6p \ + \ 1 \\ 2p \ + \ 2 & if \ m = 6p \ + \ r, 2 \le r \le 5 \end{array}$$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case (i): m = 6p, Let $S_h = \{c_{6q}, c_{6q-1} / q = 1, 2, ..., k\}$

- (a) If $v = c_{6q}$, \exists no vertex in S_h' hop dominating with at least one of the vertex of $\{c_2, p_2, c_{6q+2}, c_{6q-2}\}$.
- (b) If $v = c_{6q-1}$, \exists no vertex in S_h' hop dominating with at least one of the vertex of $\{c_1, p_1, c_{6q+1}, c_{6q-3}\}$

Thus S_h' is not minimum. Hence S_h is the hop dominating set and $|S_h| = 2p$.

Case (ii): m = 6p + 1, Let $S_h = \{c_3, c_{6q}, c_{6q+1} / q = 1, 2, ..., k\}$

(a) If $v = c_3$, \exists no vertex in S_h' hop dominating c_3 . (b) If $v = c_{6q}$, \exists no vertex in S_h' hop dominating with at least one of the vertex of { c_1 , p_1 , c_{6q+2} , c_{6q-2} }. (c) If $v = c_{6q+1}$, \exists no vertex in S_h' hop dominating with at least one of the vertex of { c_2 , p_2 , c_{6q+3} , c_{6q-1} }.

Thus S_h is the hop dominating set and $|S_h| = 2p + 1$.

Case (iii): m = 6p + 2, Let $S_h = \{c_{6q+1}, c_{6q+2} / q = 0, 1, \dots k\}$.

(a) If v = c_{6q+2}, ∃ no vertex in S_h' hop dominating with at least one of the vertex of {c_{6q+1}, c_{6q-1} or p₁}.
(b) If v = c_{6q+1}, ∃ no vertex in S_h' hop dominating with at least one of the vertex of {c_{6q}, c_{6q+4} or p₂}

Thus S_h is the hop dominating set and $|S_h| = 2p + 2$

Case (iv): m = 6p + 3, Let $S_h = \{c_{6q+2}, c_{6q+3}/q = 0, 1, \dots k\}$

(a) If $v = c_{6q+2}$, \exists no vertex in S_h' hop dominating with at least one of the vertex of $\{c_{6q}, c_{6q+4}, p_1\}$. (b) If $v = c_{6q+3}$, \exists no vertex in S_h' hop dominating with at least one of the vertex of $\{c_{6q-1}, c_{6q+5}, p_2\}$.

Thus S_h is the hop dominating set and $|S_h| = 2p + 2$

Case (v): m = 6p + 4, Let $S_h = \{c_{6q+3}, c_{6q+4} / q = 0, 1, \dots k\}$

(a) If $v = c_{6q+3}$, \exists no vertex in S_h' hop dominating with at least one of the vertex of $\{c_{6q-1}, c_{6q+5}, p_1\}$. (b) If $v = c_{6q+4}$, \exists no vertex in D' hop dominating with at least one of the vertex of $\{c_{6q-2}, c_{6q+6}, p_2\}$.

Thus S_h is the hop dominating set and $|S_h| = 2p + 2$.

Case (vi): m = 6p + 5, Let $S_h = \{c_{6q+4}, \frac{c_{6q+5}}{q} = 0, 1, \dots k\}$

(a) If v = c_{6q+4}, ∃ no vertex in S_h' hop dominating with at least one of the vertex of {c_{6q-2}, c_{6q+6}, p₁}.
(b) If v = c_{6q+5}, ∃ no vertex in S_h' hop dominating with at least one of the vertex of {c_{6q-3}, c_{6q+7}, p₂}.

Thus S_h is the hop dominating set and $|S_h| = 2p + 2$

$$2p if m = 6p
Thus, h(T_{m,2}) = \{2p + 1 if m = 6p + 1
2p + 2 if m = 6p + r, 2 \le r \le 5$$

Theorem 3.9: For n = 3, the hop domination of a Tadpole graph T_{m_i} is given by

$$\gamma_h(T_{m,3}) = \begin{cases} 2p+1 & if \ m = 6p \\ 2p+2 \ if \ m = 6p+r, \ 1 \le r \le 5 \end{cases}$$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case (i):
$$m = 6p$$
, Let $S_h = \{c_{6q}, c_{6q+1}, p_1/q = 0, 1, 2, ..., k\}$

(a) If $v = c_{6q}$, \exists no vertex in S_h' hop dominating with atleast one of the vertices such as of $\{c_2, c_{6q+2}, c_{6q-2}, p_2\}$. (b) If $v = c_{6q+1}$, \exists no vertex in S_h' hop dominating with atleast one of the vertices such as of $\{c_{6q-3} \text{ and } c_{6q-1}\}$. (c) If $v = p_3$, \exists no vertex in S_h' hop dominating with at least one of the vertices such as of $\{c_{1}, c_{m-1} \text{ and } p_3\}$

Thus S_h is the minimal hop dominating set and $|S_h| = 2p + 1$

Case (ii):
$$m = 6p + 1$$
, Let $S_h = \{c_{6q}, c_{6q+1}, p_1 / q = 0, 2, ..., k\}$

(a) If $v = c_{6q+1}$, \exists no vertex in $S_{h'}$ hop dominating with at least one of the vertex such as of $\{c_{6q-1}, c_{6q+1}, c_2, p_2\}$. (b) If $v = c_{6q+2}$, \exists no vertex in $S_{h'}$ hop dominating with atleast one of the vertices such as of $\{c_{6q} \text{ and } c_{6q+4}\}$. (c) If $v = p_1$, \exists no vertex in $S_{h'}$ hop dominating with atleast one of the vertices such as of $\{c_{1}, c_{m-1} \text{ and } p_3\}$

Thus S_h is the minimal hop dominating set and |D| = 2p + 2

Case (iii): m = 6p + 2, Let $S_h = \{c_{6q+2}, c_{6q+3}, p_1/q = 0, 1, 2, ..., k\}$

Case (iv): m = 6p + 3, Let $S_h = \{c_{6q+3}, c_{6q+4}, p_1/q = 0, 1, 2, ..., k\}$

Case (v): m = 6p + 4, Let $S_h = \{c_{6q+4}, c_{6q+5}, p_1/q = 0, 1, 2, \dots k\}$

Case (vi): m = 6p + 5, Let $S_h = \{c_{6q}, c_{6q+1}, p_1/q = 0, 1, 2, ..., k\}$

The Proof of case (iii) to (vi) follows same as previous cases. Thus S_h is the minimal hop-dominating set and $|S_h| = 2p + 2$

Thus for
$$n = 3$$
, $\gamma_h(T_{m,3}) = \begin{cases} 2p+1 & \text{if } m = 6p \\ 2p+2 & \text{if } m = 6p+r, 1 \le r \le 5 \end{cases}$

Theorem 3.10: For n = 4, the hop domination of a Tadpole graph T_{m_i} is given by

$$\begin{array}{ccc} 2p+2 & if \ m=6p+r, 0 \leq r \leq 3\\ \gamma_h(T_{m,4}) = \{2p+3 & if \ m=6p+4\\ 2p+4 & if \ m=6p+5 \end{array}$$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such

that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case (i): m = 6p, Let $S_h = \{c_{6q+1}, c_{6q+2}, p_1, p_2/q = 0, 1, ..., k - 1\}$

(a) If $v = c_{6q+1}$, \exists no vertex in S_h' hop dominating $\{c_{6q-1} \text{ and } c_{6q+3}\}$. (b) If $v = c_{6q+2}$, \exists no vertex in S_h' hop dominating $\{c_{6q} \text{ and } c_{6q+4}\}$. (c) If $v = p_1$, \exists no vertex in S_h' hop dominating with $\{p_3\}$. (d) If $v = p_2$, \exists no vertex in S_h' hop dominating with $\{p_4\}$

Thus S_h is the minimal hop dominating set and $|S_h| = 2k + 2$

Case (ii): m = 6p + 1, Let $S_h = \{c_{6q+4}, c_{6q+5}, p_1, p_2/q = 0, 1, ..., k - 1\}$

The Proof is similar to case (i) and |D| = 2p + 2

Case (iii): m = 6p + 2, Let $S_h = \{c_{6q+3}, c_{6q+4}, p_1, p_2/q = 0, 1, 2, ..., k - 1\}$

The Proof is similar to case (i) and $|S_h| = 2p + 2$

Case (iv): m = 6p + 3, Let $S_h = \{c_{6q+4}, c_{6q+5}, p_1, p_2/q = 0, 1, 2, ..., k - 1\}$

The Proof is similar to case (i) and $|S_h| = 2p + 2$

Case (v): m = 6p + 4, Let $S_h = \{c_2, c_{6q-1}, c_{6q}, p_1, p_2/q = 1, 2, ..., k\}$

(a) If $v = c_2$, \exists no vertex in S_h' hop dominating $\{c_2\}$. (b) If $v = c_{6q-1}$, \exists no vertex in S_h' hop dominating $\{c_{6q-3} \text{ and } c_{6q+1}\}$. (c) If $v = c_{6q}$, \exists no vertex in S_h' hop dominating $\{c_{6q-2} \text{ and } c_{6q+2}\}$. (d) If $v = p_1$, \exists no vertex in S_h' hop dominating with $\{p_3\}$. (e) If $v = p_2$, \exists no vertex in S_h' hop dominating with $\{p_4\}$

Thus S_h is the minimal hop dominating set and $|S_h| = 2p + 3$

Case (vi): m = 6p + 5, Let $S_h = \{c_2, c_3, c_{6q}, c_{6q+1}, p_1, p_2/q = 1, 2, ..., k\}$

(a) If $v = c_2$, \exists no vertex in S_h' hop dominating $\{c_2\}$. (b) If $v = c_3$, \exists no vertex in S_h' hop dominating $\{c_3\}$. (c) If $v = c_{6q}$, \exists no vertex in S_h' hop dominating $\{c_{6q-2} \text{ and } c_{6q+2}\}$. (d) If $v = c_{6q+1}$, \exists no vertex in S_h' hop dominating $\{c_{6q-1} \text{ and } c_{6q+3}\}$. (e) If $v = p_1$, \exists no vertex in S_h' hop dominating with $\{p_3\}$. (f) If $v = p_2$, \exists no vertex in S_h' hop dominating with $\{p_4\}$

Thus S_h is the minimal hop dominating set and $|S_h| = 2p + 4$

 $\begin{array}{ccc} 2p+2 & if \ m=6p+r, \ 0 \leq r \leq 3\\ \text{Hence when } n=4, \ \gamma_h(T_{m,4})=\{2p+3 & if \ m=6p+4\\ 2p+4 & if \ m=6p+5 \end{array}$

Theorem 3.11: For n = 5, the hop domination of a Tadpole graph T_{m_i} is given by

$$\begin{array}{rl} 2p+2 & if \ m=6p+r, r=0,1\\ \gamma_h(T_{m,4}) \ = \ \{2p+3 & if \ m=6p+2\\ 2p+5 & if \ m=6p+r, 3 \le r \le 5 \end{array}$$

Proof: Let S_h be the hop dominating set of $T_{m,1}$. The minimality of S_h follows from theorem(3.1) using the contrary of this theorem. If S_h is not a minimal hop dominating set then there exists $v \in S_h$ such that $S_h' = S_h - \{v\}$ is a hop dominating set of $T_{m,1}$. Therefore for all $u \in N'[v]$ there exists $v' \in u \in N'[v] - \{v\}, v' \in N'[v]$.

Case (i): If $m = 6p$,	Let $S_h = \{c_{6q+2}, c_{6q+3}, p_2, p_3 / q = 0, 1, \dots k - 1\}$
Case (ii): If $m = 6p + 1$,	Let $S_h = \{c_{6q+3}, c_{6q+4}, p_2, p_3 / q = 0, 1, 2, \dots k - 1\}$
Case (iii): If $m = 6p + 2$,	Let $S_h = \{c_{6q+4}, c_{6q+5}, p_2, p_3 / q = 0, 1, 2, \dots k - 1\}$
Case (iv): If $m = 6p + 3$,	Let $S_h = \{c_3, c_{6q-1}, c_{6q}, p_2, p_3 / q = 1, 2, \dots k\}$
Case (v): If $m = 6p + 4$,	Let $S_h = \{c_2, c_3, c_{6q}, c_{6q+1}, p_2, p_3 / q = 1, 2, \dots k\}$
Case (vi): If $m = 6p + 5$, previous theorem.	Let $S_h = \{c_{6q+1}, c_{6q+2}, p_2, p_3 / q = 0, 1, \dots k\}$. The proof follows as the

Theorem 3.12: $\gamma_h(T_{m,n}) = \gamma_h(T_{n,m})$ *iff* m = n.

Proof: Let m = n, then T_{m} , and $T_{n,m}$ are same graphs. Hence $\gamma_h(T_{m,n}) = \gamma_h(T_{n,m})$. On the other hand, assume $\gamma_h(T_{m,n}) = \gamma_h(T_{n,m})$, suppose if $m \neq n$, then by theorems(--) $\gamma_h(T_{m,n}) \neq \gamma_h(T_{n,m})$. Thus $\gamma_h(T_{m,n}) = \gamma_h(T_{n,m})$ if f m = n.

Corollary: $\gamma_h(T_{m,n}) = \gamma_h(T_{n,m}) = m - 1$ (or) n - 1 iff m = n, where m = n = 3,4,5. and $\gamma_h(T_{m,n}) = \gamma_h(T_{n,m}) \le m - 1$ (or) n - 1 iff m = n, where m = n = 6.

Proof:

S.No.	Tadpole Graph	Graph	$\gamma_h(G)$
	$(T_{m,n})$, $m = n$		
1	m=n=3, T _{3,3}		2 or (n-1)
2	m=n=4, T _{4,4}	$\begin{array}{c} v_2 \\ v_3 \\ v_4 \\ v_4 \\ v_4 \\ v_5 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_5 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_4 \\ v_5 \\ v_5 \\ v_5 \\ v_6 \\$	3 or (n-1)
3	m=n=5, T _{5,5}		4 or (n-1)

From the table we get $\gamma_h(T_{m,n}) = \gamma_h(T_{n,m}) = m - 1$ (or) n - 1 iff m = n, where

$$m = n = 3,4,5$$
. And $\gamma_h(T_{m,n}) = \gamma_h(T_{n,m}) \le m - 1$ (or) $n - 1$ iff $m = n$, where $m = n = 6$.

Conclusion

In this paper, we have found the hop domination number of Tadpole graph and derived some theorems on it.

References

- [1]. Harary, F., Graph Theory, ed. 1, Addison-Welsley, 1969.
- [2]. S.Alikhani and Y.H.Peng, *Dominating sets and Domination polynomials of Paths*, International Journal of Mathematics and Mathematical Science,(2009).
- [3]. C.Natarajan, S.K.Ayyaswamy and G.Sathiamoorthy, *A note on hop domination number of some special families of graphs*, International Journal of Pure and Applied Mathematics Vol 119, No.12, 2018, 14165-14171.
- [4]. M.Al-Harere and P.A. Khuda Bakhash, *Changes of tadpole domination number upon changing of graphs*, Sci.Int.(Lahore),31(2),197-199, 2019. ISSN 1013-5316; CODEN: SINTE 8.
- [5]. A.Vijayan and T.Nagarajan, Vertex-Edge Domination Polynomials of Lollipop Graphs $L_{n,1}$, International Journal of Scientific and Innovaitve Mathematical Research(IJSIMR), Vol.-3, Issue 4, April 2015, PP 39-44, ISSN 2347-307X(Print) & ISSN 2347-3142(Online).
- [6]. Ayhan A.Khalil and Omar A.Khalil, *Determination and Testing the Domination numbers of Tadpole Graph,Book Graph and Stacked Book Graph Using MATLAB*, College of Basic Education Researchers Journal Vol.10, No.1.
- [7]. Nigar Siddiqui, Mohit James, *Domijnation and Chromatic Number of Pan Graph and Lollipop Graph*, International Journal of Technical Innovation in Modern Engineering & Science(IJTIMES), Impact factor:5.22(SJIF-2017), e-ISSN:2455-2585, Vol-4, Issue 6, June-2018.
- [8]. M.S.Franklin Thamil Selvi and A.Amutha, *A Performance on Harmonious Coloring of Barbell Graph*, International Journal of Engineering and Advanced Technology (IJEAT), ISSN:2249-8958, Vol.-9, Issue-1,October 2019.
- [9]. S.Nagarajan, Aswini.B and Vijaya.A, *Upper Bound of Hop Domination number for Regular Graphs of Even degree*, ANVESAK, ISSN:0378-4568, Vol. 51, No.1(X) January-June 2021.
- [10]. S.Nagarajan, Vijaya.A and Aswini.B, Lower Bound of Hop Domination Number for Regular Graphs of Odd degree, ANVESAK, ISSN:0378-4568, Vol. 51, No.1(X) January-June 2021.
- [11]. Kulli.V.R. and Janakiram.B, *The Nonsplit Domination Number of A Graph*, Indian J.Pure Appl.Math. Vol.31,No.5, pp.545-550.