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  ABSTRACT 
The utilization of a three-operand binary adder is employed for executing modular 

arithmetic in various cryptography and pseudorandom bit generator (PRBG) 

methodologies. The carry save adder (CS3A) is widely employed as the primary 

approach for performing three-operand addition. The ripple-carrying stage (n) of the 

CS3A introduces a propagation delay of O. The critical route time can be reduced by 

employing a parallel prefix two-operand adder, such as the Han-Carlson (HCA) 

method, for three-operand addition. The process of three-operand binary addition is 

executed by employing an innovative adder design that is both high-speed and area-

efficient. This design incorporates pre-compute bitwise addition, followed by carry 

prefix calculation logic, resulting in a significant reduction in adder latency to O(log2 

n). The proposed architecture has been subjected to functional validation on an FPGA 

device and has been generated utilizing a 32nm CMOS technology library that is 

readily available. In the case of 32-, 64-, and 128-bit architectures, the recommended 

adder exhibited a performance improvement of 3.12, 5.31, and 9.28 times respectively 

compared to the CS3A after post- synthesis. The HC3B demonstrates superior 

performance in high-speed data processing due to its reduced spatial requirements, 

lower power consumption, and diminished delay when compared to the adder. 

Furthermore, it should be noted that the proposed adder exhibits lower average delay 

power (ADP) and peak delay power (PDP) compared to the existing three- operand 

adder techniques. 
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Introduction 
Hardware multipliers rely heavily on multi-operand adders in order to calculate 

partial products. The use of multi-operand adders becomes important when 

performing multiplication operations that need the addition of numerous partial 

products. Due of the high power consumption in the multipliers and other 

arithmetic blocks, low-power electronics with low switching noise are required. 

Due to the ability of inspecting operands for addition that might be either single 

bits or multiple bits, the adder's input and output can be in multiple bits [3]. To 

more directly depict a multi- operand adder, where partial sums are compressed 

and carry is less widely propagated, compressor trees may be used. In this work, 

many different kinds of multi-threaded arithmetic (MTA) are used. These include 

the Array tree adder, Wallace adder, Balanced delay tree adder, and Overturned-

stairs adder. Despite its high power consumption and processing lag, adders are 

crucial in arithmetic-functioning machines. Adders are also used in multipliers, 

another component of resource-intensive arithmetic circuits. 

Quick adders, sometimes known as other adders, are faster than the ripple carry 

adder (RCA) in terms of latency. However, they often have a bigger surface area 

and greater energy needs. The RCA, on the other hand, has a smaller footprint and 

lower power requirements, but it also has a longer latency. It is important to 

remember, however, that systems with a high number of operands often have 

resource constraints. 
 

Existing Work 
 

No significant effort towards delay refinement of RCA-BTA has been documented in 

the existing literature. Therefore, the critical route delay analysis is provided [5] to 

investigate the potential for delay minimization of the RCA-BTA structure. Most 
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of the suggested work in the literature is geared at bettering the design metrics of 

fast adders, which in turn improves the performance of the WTA architecture. 

 

2.1 Adder Types 
 

2.1.1 Half Adder 
 

The half adder is used to perform the addition of A and B. These results are S and C 

(the value that will theoretically be carried over to the next addition), both of which 

are produced by the method. The sum is 2C plus S at the end. The right half-adder 

arrangement uses an XOR gate and an AND gate to process S. By connecting the carry 

outputs of two half adders with an OR gate, a full adder may be created. 
 
 

 
Figure 1: Half Adder 

2.1.2 Full Adder 
 

 

A full-adder may multiply a binary number by 8, 16, 32, or even more digits. The 

usual notation for the circuit's two-bit sum at the output is Cout or S. The following 

is the truth table for a complete adder with one bit. 

 
 

 
 

 
Figure 2 : Implimentation Of full adder 
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2.1.3 Ripple Carry Adders (Rca) 
 

 

Ripple carry adder of N bits is created by concatenating N complete adders. The 

result of one full adder is sent into the input carry of the next full adder in this 

implementation. The following equations are used in the computation of sum and 

carry. By bouncing from one full adder to the next, carry takes the longest critical 

route and experiences the most severe delay. Si = Ai * Bi * Ci 
 
Ai + Bi + (Ai + Bi) Ci + 1. Where i is an integer between zero and n minus one 

 

 

Although it takes the longest amount of time to add (O (n) time), RCA takes up the 

least amount of space (O (n) area). The delay of a ripple carry adder with N full 

adders chained together is 2N gate delays from Cin to Cout. The adder's latency 

grows proportionally as the number of bits rises. Figure shows an RCA block 

diagram. 

 

Figure 3: Block diagram of RCA 

 
 
 

2.1.4 Carry Save Adder 

 

In computer microarchitecture, a carry-save adder is used to compute the sum 

of three or more binary data of n bits. 

 

It's elementary school maths: "8+1=0, carry 1," "7+2+1=0, carry 1," "6+3+1=0, 

carry 1," and so on. By carrying the carry from one digit to the next during the 

calculation, we may have a better idea of the initial digit of the result. Adding two 

numbers of the same length will take time proportional to n if the computer can do 

several calculations simultaneously. In electrical 
 
terms, using bits (binary digits), a carry must propagate from one end of a number 

 
 

Mukt Shabd Journal

Volume XI, Issue VIII, AUGUST/2022

ISSN NO : 2347-3150

Page No : 717



 
 
to the other, taking time proportional to n if we have n one-bit adders. We won't 

rest until this is resolved, Fifth, we have no idea what the ultimate verdict will be. 
 
6) We can't say if the sum is more than or less than a certain value (or even 

whether it's positive or negative).A carry look-ahead adder has the potential to 

decrease the delay. However, the propagation delays increase as n increases 

because the distances signals must travel on the device expand in proportion to 

convey look-ahead. This is no longer the true, however, for really large numbers. 

Carry look ahead is mostly useless for public key cryptography, which needs 

integer sizes between 512 and 2048 bits. 
 

 
Figure 4: Carry Save Aadder 

 
 

It is common custom to use either one three-operand adder or two two-operand adders 

when carrying out a binary addition with three operands. However, it is also possible 

to utilise a single two-operand adder. [2] The carry-save adder is a tool that is ideal for 

mathematical computations because of its small size and portability. The three-

operand binary addition is a variation of the regular arithmetic that is used in 

cryptographic algorithms and PRBG approaches. On IoT-based hardware devices, the 

performance of MDCLCG and other alternative encryption algorithms is negatively 

impacted because CSA has a longer ripple-carry stage carry propagation delay. It is 

possible to use the Carry Save Adder to add together values of any size, ranging from 

3 bits all the way up to n bits. The CSA and the Full Adder are equivalent to one 

another. Instead of the other adder, the partial product terms for each cluster will be 

added using CSA. When compared to the CSA approach, using 
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an alternate adder takes much more time. More than two numbers will need to be 

added together in a lot of different situations. The addition of the first two 

numbers, each of which has n bits, is the quickest and easiest technique to merge m 

numbers. And so on, until each of the three is in equilibrium. If 
 
the gate delay is O (m log n), then an adder tree that has O (log m * log n) 

additions will need to be constructed. Using carry-saving augmentation might 

potentially lower the amount of time needed to complete the job in half. 

 

It is possible to use a parallel prefixed two-operand adder like the Han-Carlson 

(HCA)[3] in order to cut down on the essential route time required for performing 

three-operand binary addition. We may be able to reduce the critical route latency 

by O(log2 n) if we increase the area by O(log2 n), and the same is true in the other 

direction. Therefore, a potent very large scale integration (VLSI) architecture is 

necessary in order to do the rapid binary addition while employing relatively 

simple hardware. This study introduces a novel high-speed area-efficient adder 

approach that employs pre-computed bitwise addition followed by carry-prefix 

calculation logic to accomplish the three operand addition. In contrast, the HCA-

based three operand adder (HC3A) consumes less gate area and minimises 

propagation latency. This technique was developed to conduct the addition of three 

operands. The suggested Verilog HDL adder design is synthesised using a 32nm 

CMOS technology library that is available for purchase commercially. The one-of-

a-kind adder technique is put to the test, after which it is contrasted with the tried-

and-true CS3A and HC3A approaches to adding three operands. In order to shorten 

the time required for the crucial route, it is possible to make use of a parallel prefix 

two-operand adder that has two stages. According to the findings of the study, the 

methods that are the most efficient for adding two operands together are 

logarithmic prefix adders and parallel prefix adders. There are a total of six unique 

topologies for these adder techniques, and they are referred to as the Brent-Kung, 

Sklansky, Knowles, Ladner-Fischer, Stone (KS), and HanCarlson (HC) topologies, 

respectively. When n is more than 16, Hanlon and Carlson emerge as the most 

efficient of the three methods. 

 

Using the Han-Carlson adder, it is possible to carry out a three-operand addition in 
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two separate stages, as seen in Figure. (HCA). 

 
 

The blueprint for the three-operand version of the HC3A (HC3A) is quite detailed. 

The number of black-grey cell stages that represent the length of the PG logic 

chain that the Han-Carlson adder makes use of. 
 

3. Proposed Method 
 

Integrated circuits are in danger of losing their field dependability as a result of 

increases in integration density and process shrinkage. It is essential for mission-

critical systems such as server-class computers and embedded devices to have error 

detection that runs in parallel. Due to the fact that adding is the initial step in any 

computation, many adders find a home in extremely large size integrated circuits. 
 
Any erroneous output may be recognised by a comparison of two internal values 

included inside the carry select adders. It has been proposed in the past that concurrent 

error detecting adders may be used; these adders are able to recognise wrong outcomes 

from a single mistake. On the other hand, it is not always easy to identify a flawed 

product that is the consequence of a confluence of problems. If a second fault occurs 

before the first fault is discovered as a result of the detection of an erroneous output, 

then the capacity to identify concurrent errors may be compromised or lost entirely. 

Finding the first flaw before the second one is necessary in order to have error-free 

adding machines. Because of this, the simplicity with which a failure in a concurrent 

error detecting adder may be recognised during maintenance, a reboot, or even during 

operation is of the utmost importance. 
 
3.1 Multiple Block Selection Adder, Size 
 

In Figure 5, you can see a straightforward structure for an n-bit multi-block carry 

select adder. Its outputs are the carry output cn and the sum S: [sn1.. s0], while its 

inputs are the agehend X: [xn1.. x0] and the addend Y: [yn1.. y0]. It is composed of 

several little b bits. Block 0 is the name given to the first part of the series. Let's 

assume the kth block, which we'll refer to as blockk, has a bit width of nk. Every nk 

has the potential to be different from the others. Carry information is included in both 

the input cink and the output coutk of blockk. A row of full adders that executes a 

ripple carry addition on n bits makes up block0. An incrementer (INC) and a half 

adder (HA) are included in the construction of each full adder seen in the figure. A 
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binary value consisting of just two bits plus a carry bit is input to an INC, and the 

resulting sum is output as a binary number consisting of only two bits. Each of the 

remaining blocks consists of a row of 2:1 multiplexers (MUXs), a row of HAs, two 

rows of INCs (INC0 and INC1), and a row of INCs (INC0 and INC1). The 

gatelevel designs for the HA, INC, and MUX gates maybe seen in Fig. 5(b). INC0 

and INC1 in each block, with the exception of block0, calculate two alternative 

sum results. One of these outcomes is based on the assumption that the carry input 

cink is 0, and the other is based on the assumption that cink is 1. The row of MUXs 

selects the correct one. In this abbreviated form, a signal name that has two 

subscripts specifies, respectively, the block index and the position inside the block. 

The xk,j and yk,j representations of the input bits at position j in blockk are written 

as (0 j nk). Where l = j + Pk1 m=0 nm, xk,j 
 
= xl. The column of INCs to which a signal belongs is indicated by the superscript 

that is placed after the name of the signal. It might also be expressed as s 0 k,j (0 j 

nk), where j represents the result of running INC0 at position k in blockk. The 

carry signals for bit j 1 are indicated by the notation c 0 k,j and c 1 k,j, 

respectively. These signals are referred to as INC0 k and INC1 k. The ranges 

[xk,nk1.. xk,0] and [yk,nk1.. yk,0] serve as Blockk's inputs, while the range 

[sk,nk1.. sk,0] serves as Blockk's output range. 
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Figure 5: Multi-block carry select adder (a), and the gate-level designs of HA, INC 

and MUX (b). 
 

3.2 Capability to Identify Problems in Parallel Operations 
 

One stuck-at fault in an INC' or its ascendant HA' never affects both the total output 

and one of the two carry signals at the same time, as stated in Section 3.1. Since only a 

single stuck-at fault may exist inside an INC' or its parent HA', this is the situation. 

This means that (1) the sum signal of the INC', (2) one of the carries of the INC', or 
 
(3) all three signals (the two carries and the total) will be affected by a fault in the 

INC' or its ascendant HA'. By comparing the expected parity pS with the actual 

parity S and the values of cn and c ′ n, we may assess whether 
 
or not an error was caused by a fault. The first case involves using one of INC's two 

carry signals for the addition operation and the other for parity prediction. Errors in the 

parity prediction carry signal only affect one bit of the parity prediction carry bits, 

hence the final tally is unaffected. Incorrect results caused by the flaw may then be 

identified and corrected. Let ck,j represent the carry that is affected by the fault that 

occurred at an INC' when the carrysignal for addition is erroneous. A defect at an INC' 

has an effect on the carry, denoted by ck,j. If the problem affecting ck,j does not 

propagate to other nodes, it will be uncovered when it causes a second error in 
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the total signal, sk,j. The reason for this is because the faulty carry signal is not being 

used for parity prediction. However, errors will be introduced into the q sum signals 

sk,j+1, sk,j+q if the incorrect value of ck,j is passed on at q consecutive carry signals. 

This happens because ck,j is being incorrectly propagated. So, the wrong answer is the 

sum signals sk,j, sk,j+1, , sk,j+q. Here, the q carry signals c ′ k,j+1, , c ′ k,j+q are also 

incorrect because the logic used to generate them is the same as that used to generate 

the ck,j+1, , ck,j+q, and both use the same carry inputs (ck,j, ck,j+1, , ck,j+q1). Signals 

for q+1 sum sk,j, sk,j+1, and sk,j+q, as well as q carry c′ k,j+1, and c′ k,j+q, will be off 

as a result. Therefore, we will use q incorrect signals to determine the expected parity 

(pX pY) (pCb1 pC0), and q+1 incorrect signals to determine the overall signal parity. 

Each of these two parities will be different from the other due to the one variation in 

the total amount of erroneous signals used in each computation, allowing the error to 

be pinpointed. In the second case, the total result is not the same as the right one since 

a bit of the sum result was flipped. However, the calculated parity is correct since all 

of the carry bits used to make the prediction were correct. The impact of a mistake 

may be determined by comparing the predicted and actual parities of the final 

outcome. In the third instance, the INC'-derived total bit and all of the carry bits would 

be incorrect. The acquired sum bits and carry bits used for parity prediction in the 

upper locations do not conflict with one another, with the exception of the position of 

the flawed INC'. This is because it has been shown that both carry bits are incorrect. 

Even if the parity prediction carry bits are correct, the total bit from the INC' will be 

inverted because of the lower bits. Consequently, the expected and actual levels of 

equality are not the same. The adder has two carry inputs, cink and cin' k, one for each 

adder block. If the cink is wrong, then the sk,0 will be wrong as well. The error on 

cink may also lead to problems with subsequent sum outputs (say, q additional sum 

outputs). It will also lead to errors at the q carry signals c ′ k,i, much as the explanation 

provided in scenario 1. As a result, there will be q + 1 incorrect sum outputs and q 

incorrect carry signals c ′ k,i, both of which will be identified for the same reasons as 

in instance (1). When performing an XOR or MUX' operation, only one of the sum 

bits, the carry bit, or the projected parity is altered. Therefore, the effect of an error in 

them may be determined by comparing the projected parity with the parity and by 

comparing the two carry outputs of the 

 
 

 

Mukt Shabd Journal

Volume XI, Issue VIII, AUGUST/2022

ISSN NO : 2347-3150

Page No : 723



 
 
adder. Keep in mind that if one of the input operands does not match its parity 

input, the projected parity may be off. This occurs because the parity input is used 

to make parity predictions. As a result, it is possible to find contradiction between 

X and pX or between Y and pY even if the adder is error-free. This is so because it 

is possible to verify these discrepancies separately. As can be seen in Figure 3, the 

proposed adder is well-suited for usage in systems that conduct parity-based error 

detection. Real-world designs like [21] and [22] make use of arithmetic circuits 

with parity-based error detection. The adder's expected parity is utilised for the 

result's parity bit, while the parities of the operands (pX and pY) are read from 

memory or a register file and used to perform the addition. By monitoring the 

system's parity checker and comparing the adder's cn and c ′ n carry outputs, one 

may ascertain whether or not the adder has generated a faulty result. 
 

 
 

Figure 6: Example of a datapath circuit with the proposed adder in a system using 
parity- based error detection 
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4. Hardware Requirements 

 
 

"Very Large Scale Integration" is the abbreviation for VLSI. This is the area of 

study concerned with cramming ever more logic devices into ever smaller spaces. 

With very large scale integration (VLSI), circuits that formerly required many boards 

are now able to fit into an area only a few millimetres wide. There is now a great 

chance to accomplish goals that were previously impossible. Everyday items like 

computers, cars, smartphones, and even cutting- edge digital cameras all use VLSI 

circuits. We'll examine how extensive knowledge in several subfields of the same 

topic is required for all this in the next chapters. While very large scale integration 

(VLSI) has been around for some time, developments in computing have led to a huge 

increase in the number of tools available for designing VLSI circuits. Additionally, IC 

capabilities has risen dramatically over time in terms of computing power, utilisation 

of available space, and yield in accordance with Moore's law. Thanks to the 

confluence of these two developments, novel ICs with a wide range of capabilities are 

now within reach. The proliferation of tiny computer devices, such as those found in 

embedded systems and ubiquitous computing, means that 
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even the shoes you wear may one day do valuable tasks, such as monitoring your 

heartbeats. 
 
There are three types: 

 

1. Analog: 
 
2. Amplifiers, Data converters, Filters, Hase Locked, Sensors, etc., that need a 

high degree of accuracy yet have a low transistor count. 

3. Application-oriented integrated circuits (ASICS) 
 

Improvements in IC manufacturing have allowed us to pack more and more 

powerful circuits into ever-tinier packages. Because of this, we can fit a greater 

amount of functionality into the same footprint. The primary use of this skill is in 

the creation of ASICs. These integrated circuits (ICs) are purpose-built, meaning 

they are designed to do a single task very well. Digital signal processing (signal 

filters, picture compression, etc.) is where you'll most often see this used. To put it 

simply, a digital wristwatch typically consists of a single IC doing all the time- 

keeping tasks, in addition to other functions like games, calendars, etc. 

3. Systems-on-a-chip (SOC): 
 

These mixed signal circuits (digital and analogue on the same chip) are quite 

sophisticated. An example of a system on a chip is a network processor or a 

wireless radio chip. 

 

4.1 VLSI's Benefits 
 

While our focus in this book will be on ICs, it is important to note that the 

capabilities and limitations of ICs heavily influence the design of the larger system. 

There are several essential ways in which integrated circuits enhance system 

features. When compared to digital circuits made of discrete components, ICs 

provide three main benefits: 
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• Size. In contrast to discrete components, which may be as large as millimetres or 

centimetres in size, integrated circuits include transistors and wires that are just 

micrometres in size. Since smaller components have less parasitic resistances, 

capacitances, and inductances, they are faster and use less power than their larger 

counterparts. 

 
• Speed. Within a chip, it is significantly faster to flip a signal from logic 0 to logic 

 
1 than it is to do so across chips. Internal chip communication may be several 

orders of magnitude quicker 
 
than inter-chip communication on a PCB. Smaller components and connections 

mean less parasitic capacitance to slow down the signal, which is why circuits on a 

chip can operate at such fast speeds. 

 

The use of energy. Within a semiconductor, logic activities use far less energy. 

Again, smaller circuit sizes on the chip are mostly responsible for the reduced 

power consumption; circuits with smaller sizes have fewer parasitic capacitances 

and resistances, respectively. 
 

5. Simulation Result 
RTL:  
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Internal Block Diagram  

 
 
Simulation Results:  

 
 
Conclusion 

 

This research presents a high-speed, area-efficient adder strategy and related VLSI architecture 

for computing modular arithmetic for use in cryptography and PRBG applications. In this 

method, the addition of three input operands is computed concurrently using a four-stage prefix 

adder. The suggested architecture is smaller overall due to the elimination of unnecessary prefix 

calculation steps in both PG logic and bit-addition logic. The idea of the hybrid Han-Carlson 

two-operand adder (HHC2A) is expanded upon in the hybrid Han-Carlson three-operand adder 

(HHC3A) design. Similar to the suggested adder design, the Kogge Stone hybrid Han-Carlson 

three-operand adder is written in Verilog HDL. All of these devices' core area and delay timing 

are synthesised using the Spartan 3 technology library. For better area and latency performance, 

we implemented our adder in the FIR filter's adder section. By considering both area and delay, 

we determined that our adder was the best option. 
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